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Mais tout le C++ (templates, A-fonctions.).
Développement débuté en 2004.
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v

Développée par Intel.
Deux licences :

» GPLv2.

» Licence commerciale avec support.

(livrée avec le compilateur Intel).

Documentation :

> En ligne.

» Livre chez O'Reilly.
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> La récursivité est centrale dans TBB , alors que OMP est
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TBB / OMP.

» TBB : uniquement C++.

» OMP « An excellent Fortran-style code written in C » ...
méme s'il y a de la gestion de tiches dans les derniéres
versions de OMP .

> La récursivité est centrale dans TBB , alors que OMP est
plutdt statique.
Récursivité => passage a |'échelle.

L'apprentissage de TBB est simple : on se concentre sur des
concepts de haut niveau.



Penser pour TBB.

Décomposition : en taches qui peuvent tourner en méme temps.

Passage a |'échelle : le nombre de taches doit croitre quand la taille
du probléme augmente.

Ne pas penser aux verrous, et rarement a la synchronisation.

Bien siir, TBB ne simplifie pas les problémes de partage de données
(« thread safety » ).
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Mais pourquoi t'intéresses tu a ca?

Parce que je n'ai pas d'autre solution. Parce que TBB résout
élégamment le probléme de I'équilibrage des charges.

Un premier exemple trés concret.

%?(X, t) —e Aui(x,t) = fi(ui(x, t),..., um(x 1)),

1<i<m,xeq,
ui(x,0) = u9(x), 1<i<m,xeq.

Systéeme de Réaction—Diffusion (chimie, médecine...).

Découper en deux blocs élémentaires :
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ou;
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1. Le premier sous-probléme :

ou;

E(X, t) — & A U,’(X, t) =0./i= 1, ..n.

fait apparaitre un parallélisme du pauvre (n taches
indépendantes) ; mais |'exécution de chaque tache peut créer
du parallélisme de taches (exemple : produits

matrice x vecteur).

2. Le second sous probléme :

Ou;

i (x,t) = fi(ui(x, t), ..., um(x,t)), i=1,..n.

fait apparaitre un parallélisme colossal : autant de systémes
d’'EDOs a résoudre que de points dans la grille de
discrétisation.

=> taches= paquets de points? taille des paquets? TBB fait
¢a pour vous.
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L'autre probléeme

%(X, t) = fi(ui(x, t),...,um(x,t)), i=1,..n

Réaction de
Belousov-Zhabotinsky
(Ondes spirales).

Zones a |'équilibre (codit de la résolution du systéme d'EDOs faible)
et zones loin de I'équilibre (cot élevé). => difficile de faire un
équilibrage des charges a-priori; TBB fait ¢ca pour vous.



Différents types de parallélisme

1. Parallélisme par les données.
Appliquer la méme transformation a tous les éléments d'un
ensemble, quand les transformations sont indépendantes.



Différents types de parallélisme

1. Parallélisme par les données.
Appliquer la méme transformation a tous les éléments d'un
ensemble, quand les transformations sont indépendantes.

2. Parallélisme par les taches.
Graphe de dépendance de taches; regroupement pour le
parallélisme de données.



Différents types de parallélisme

1. Parallélisme par les données.
Appliquer la méme transformation a tous les éléments d'un
ensemble, quand les transformations sont indépendantes.

2. Parallélisme par les taches.
Graphe de dépendance de taches; regroupement pour le
parallélisme de données.

3. Pipeline.
Appliquer plusieurs traitements successifs & une collection
d'objets.

On retrouve tout ¢a dans TBB .



Exemples : des tadches complétement indépendantes.

Produit matrice x vecteur Y = A.X.
for i in[1..N] do

Y =< A,"*.X >
end



TBB : PARALLEL_FOR

static const int n=1000;
double a[n][n],x[n],y[n];

void prod(int n,double *xa,double x[], double y[])

{

for(int line=0;line<n;line++)

double pscal=0.0;

for(int col=0;col<n; col++)
pscal+=a[line ][ col]*xx[col];

y[line]=pscal;

}



TBB : PARALLEL_FOR

class Mprod{
const int n;
double xxa, *x,xy;
public:

//constructeur:
Mprod(int N, double xxA,double %X, double *Y):

n(N).a(A), x(X).y(Y){}

//constructeur par copie.
Mprod(const Mprod& M):
n(M.n),a(M.a),x(M.x), y(M.y){}



TBB : PARALLEL_FOR

[l faut ajouter une méthode, dont la signature est imposée :

void operator()(const blocked range<size t>& r) con
{
for(int line=r.begin();line<r.end();line++)
{
double pscal=0.0;
for(int col=0;col<n;col++)
pscal+=a[line][col]xx[col];
y[line]=pscal;

}



TBB : PARALLEL_FOR

[l faut ajouter une méthode, dont la signature est imposée :

void operator()(const blocked range<size t>& r) con
{
for(int line=r.begin();line<r.end();line++)
{
double pscal=0.0;
for(int col=0;col<n;col++)
pscal+=a[line|[col]xx[col];
y[line]=pscal;
}
}

maintenant, je peux faire :

parallel for(blocked range<size t>(0,n),
Mprod(n,a,x,y));

... et voilal
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TBB : PARALLEL_FOR

Tachons de comprendre.
Décomposition récursive de [0, n[ jusqu'a un certain niveau (13,
c'est TBB qui décide).

[0, n[
[0,n/2] [n/2, n[
[0, n/4] [n/4,n/2] [n/2,3n/4] [3n/4, n[
etc...

Analysons :
1. parallel_for crée un objet de type Mprod avec l'intervalle
[0, nl.
2. Deux nouveaux objets de type Mprod avec les intervalles
[0,n/2[ et [n/2, n[ etc... Le constructeur par copie est utilisé.

3. les feuilles terminales sont les tAches indépendantes, qui
n'ont plus qu'a étre exécutées.
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> le nombre de taches créées est a-priori largement supérieur au
nombre de fils de calcul disponibles,
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TBB : PARALLEL_FOR : commentaires et ajouts.

> le nombre de taches créées est a-priori largement supérieur au
nombre de fils de calcul disponibles,

» |'efficacité ne peut &tre obtenue que si chaque tache crée est
suffisamment codteuse..

d'ol quelques raffinements :

» L'objet de type blocked_range<size_t> contient un
paramétre supplémentaire facultatif :
blocked_range<size_t>(0,n) =>
blocked_range<size_t>(0,n,k)

k limite la descente récursive a des intervalles de taille k.

» parallel_for a un 3° argument, facultatif : le partitioner.
Correspond a différents algorithmes pour le partitionnement de
I'intervalle [1, n[. Par défaut, on utilise auto_partitioner.

Note : je n'ai jamais gagné grand chose a utiliser ces raffinements!
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Réductions

n—1
Exemple emblématique : le produit scalaire : s = > x.y;.
i=1

double dotprod(int n,double x[],double y[])

double ret=0.0;
for(int i=0;i<n;i++)
ret+=x[i]*xy[i];

return ret

}
TBB va :

» découper l'intervalle [1, n[ en sous intervalles (arbre binaire),
» calculer les produits scalaires sur les sous intervalles,

» faire remonter les résultats élémentaires dans |'arbre binaire.

Ingrédients :
» parallel_reduce,

» une classe pour empaqueter le calcul.



Réductions

class dotprod{

double prod;
double xx,xy;
public:
dotprod (double xX,double xY): x(X),y(Y),
prod (0.0){}
dotprod (dotprod& D, split):x(D.x),y(D.y),
prod (0.0){}

void join(const dotprod& D){prod+=D.prod;}



Réductions

class dotprod{

double prod;
double xx,xy;
public:
dotprod (double xX,double xY): x(X),y(Y),
prod (0.0){}
dotprod (dotprod& D, split):x(D.x),y(D.y),
prod (0.0){}

void join(const dotprod& D){prod+=D.prod;}

Bien remarquer :

» la deuxiéme méthode n'est pas un constructeur de copie :
I'argument split est |la pour le marquer.

> c'est bien siir join qui fait la réduction.
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Il reste a écrire I'opérateur qui calcule les produits scalaires sur les
sous intervalles.

void operator()(const blocked range<size t>& r)
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double result() const {return prod;}



Réductions

Il reste a écrire I'opérateur qui calcule les produits scalaires sur les
sous intervalles.

void operator()(const blocked range<size t>& r)

{
prod=0.0;

for(size t i=r.begin();i<r.end();i++)
prod+=x[i]xy[i];

double result() const {return prod;}
L'utilisation :

dotprod prod(x,y);
parallel reduce(blocked range<size t>(0,n),prod);
double prodscal=prod.result ();



Réductions : commentaires

dotprod prod(x,y);

parallel reduce(blocked range<size t>(0,n),prod);
double prodscal=prod.result ();

1. parallel_reduce regoit une référence a prod.

2. lors de la remontée de I'arbre binaire, join met a jour prod
des fils vers le pére.

3. Méme remarques que pour parallel_for : on peux limiter la
taille des grains et/ou préciser un partitioneur.
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» blocked_range2d : opére sur des produits cartésiens de deux
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Les Ranges
Ona:

> blocked_range

» blocked_range2d : opére sur des produits cartésiens de deux
intervalles semi ouverts.

En fait ces deux types (templates) sont des modéles de Range. On
peut fabriquer ses propres Range a condition de se conformer au
concept de Range.
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“R(O)

empty () const

is divisible() const
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Les Ranges

Le concept de Range

R(const R&)

“R(O)

empty () const

is divisible() const

R(R& r,split)

La derniére méthode découpe r en deux Range. split est une
classe (qui ne fait rien, vide), pour ne pas confondre la méthode
avec un constructeur de copie.

Note : c'est vraiment du C++.
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Retour a une probléme précédemment évoqué

En fait cela revient, aprés discrétisation, a résoudre :

dU;
dt

ol les A; sont des matrices et les U; de grands vecteurs.

(t)= AU, i=1,n.

En général, il faut, pour chaque équation (i = 1, n), résoudre des
systémes linéaires avec A; => (avec des méthodes itératives) :
1. calculer des produits matrice x vecteur avec A;,
2. effectuer des produits scalaires

3. en nombre qui peut dépendre de i .
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Deux niveaux de parallélisme

1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1) ,MesEquations)
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Retour a une probléme précédemment évoqué
Deux niveaux de parallélisme
1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1) ,MesEquations)

2. puis pour chaque équation, lancer les méthodes itératives, qui
vont faire des produits matrice x vecteur (parallel_for!) et
des produits scalaires (parallel_for! ).

> pas de synchronisation a gérer,

» bonne occupation des fils.
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Une tentative pour faire (une partie d')une STL paralléle.
La STL ne permet pas d’accés concurrent aux conteneurs =>
utilisation de verrous.
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Conteneurs

Une tentative pour faire (une partie d')une STL paralléle.
La STL ne permet pas d’accés concurrent aux conteneurs =>
utilisation de verrous.
Les conteneurs TBB :
» verrouillage a grain fin.

» algorithmes ne necessitant pas de verrous (7 7).
Plus coliteux que les conteneurs de la STL.

» concurrent_queue.
> concurrent_vector.
» concurrent_hash_map.

Par exemple, concurrent_vector permet un agrandissement sans
risque.



Allocation mémoire

Comment faire pour que |'allocation mémoire :
1. passe a I'échelle,
2. concurrente.

3. pas de faux partage.



Allocation mémoire

Comment faire pour que |'allocation mémoire :
1. passe a I'échelle,
2. concurrente.

3. pas de faux partage.
Le faux partage?

double x[1000],y[1000];

le fil 1 écrit en x[999] et le fil 2 écrite en y[0] ET x[999] et
y[0] sont dans la méme ligne de cache. => ¢a marche, mais au
prix d'un ralentissement considérable !
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Deux allocateurs :
1. scalable_allocator
2. cache_aligned_allocator.

cache_aligned_allocator=
scalable_allocator + alignement sur les lignes de caches.



Allocation mémoire

Deux allocateurs :
1. scalable_allocator
2. cache_aligned_allocator.

cache_aligned_allocator=
scalable_allocator + alignement sur les lignes de caches.

@ ca craint un peu...

» allocation dans des blocs de mémoire différents.

> les versions anciennes (2011) de TBB fabriquaient du gruyére
de mémoire.

Allouer, désallouer oui,mais pas trop en paralléle.
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Le style TBB : éviter les MUTEX et autres systémes de verrous.
Si nécessaire : TBB fournit des classes de MUTEX.



Exclusion mutuelle

Le style TBB : éviter les MUTEX et autres systémes de verrous.
Si nécessaire : TBB fournit des classes de MUTEX.

Les opérations atomiques

» beaucoup plus rapides que les mutex.
» uniquement des objets de petite taille (taille d'un double).

> liste des opérations possibles trés limitées.



Opérations atomiques

Déclaration :

atomic<T> x

Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat

=x lire la valeur de x

X= affecter une valeur a x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne |'ancienne valeur de x

x.compare_and_swap(y,z) si x==z, x=y
retourne |'ancienne valeur de x.



Opérations atomiques

Déclaration :

atomic<T> x

Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat

=x lire la valeur de x

X= affecter une valeur a x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne |'ancienne valeur de x

x.compare_and_swap(y,z) si x==z, x=y
retourne |'ancienne valeur de x.
t+, -, +=,-= réalisées avec les opérations ci-dessus.

s




Opérations atomiques

Déclaration :

atomic<T> x

Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat

=x lire la valeur de x

x= affecter une valeur a x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne |'ancienne valeur de x

x.compare_and_swap(y,z) si x==z, x=y
retourne |'ancienne valeur de x.
t+, -, +=,-= réalisées avec les opérations ci-dessus.

s

Exemple : static atomic<int> counter
dans une classe passée a parallel_for.
@ Forcément, ca colite un peu.



Installation et mise en ceuvre

Installation

» Compilateur Intel : livrée avec.

» g+ ou autre : téléchargement du source et installation
(Makefile).
Le source contient des tests et des exemples.

Il y a des mises a jour fréquentes : la bibliothéque évolue.
Pour les masochistes : ca marche méme sous Windows !.



Installation et mise en ceuvre

Mise en ceuvre

Dans le préambule :
» #include "tbb/tbb.h"
> using namespace tbb;
Dans main :
task_scheduler_init init ;< nombre de fils est choisi par
TBB .
ou
task_scheduler_init init(5);// « limité a 5 fils.
» On peut donc tester le programme en séquentiel, mais avec le
mécanisme de TBB .
» on peut mesurer le passage a I'échelle.



Installation et mise en ceuvre

Mise en ceuvre

Dans le préambule :
» #include "tbb/tbb.h"
> using namespace tbb;
Dans main :
task_scheduler_init init ;< nombre de fils est choisi par
TBB .
ou
task_scheduler_init init(5);// « limité a 5 fils.
» On peut donc tester le programme en séquentiel, mais avec le
mécanisme de TBB .
» on peut mesurer le passage a I'échelle.

Edition des liens :

» -1tbb -1ltbbmalloc_proxy -ltbbmalloc
» il existe une version debug de tbbmalloc.
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Conclusion

» facile et agréable a utiliser,
» pas forcément facile & déboguer,

» un outil de mesures de performances est bien venu (VTune).
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Merci |




