Threading Building Blocks (TBB)
Thierry Dumont
Institut Camille Jordan

UMR CNRS 5208.

24 Février 2014.

Une autre maniére de concevoir le parallélisme en
mémoire partagée.

v

TBB est une bibliothéque (pas d'ajout au langage (pragma
etc.)).

Du C++ standard, rien que du C++ .
Mais tout le C++ (templates, A-fonctions.).
Développement débuté en 2004.

v

v

v

Une autre maniére de concevoir le parallélisme en
mémoire partagée.

v

TBB est une bibliothéque (pas d'ajout au langage (pragma
etc.)).

Du C++ standard, rien que du C++ .
Mais tout le C++ (templates, A-fonctions.).
Développement débuté en 2004.

v

v

v

Développée par Intel.
Deux licences :

» GPLv2.

» Licence commerciale avec support.
(livrée avec le compilateur Intel).

Une autre maniére de concevoir le parallélisme en
mémoire partagée.

v

TBB est une bibliothéque (pas d'ajout au langage (pragma
etc.)).

Du C++ standard, rien que du C++ .
Mais tout le C++ (templates, A-fonctions.).
Développement débuté en 2004.

v

v

v

Développée par Intel.
Deux licences :

» GPLv2.

» Licence commerciale avec support.

(livrée avec le compilateur Intel).

Documentation :

> En ligne.

» Livre chez O'Reilly.

Ce que c'est, ce que ce n'est pas

> repose sur des processus légers (threads),

» parallélisme de données.

> pas de connaissances nécessaires sur les processus légers.
» on spécifie des taches, pas des processus légers.

» parallélisme emboité, récursivité.

» portabilité.

Ce que c'est, ce que ce n'est pas

> repose sur des processus légers (threads),

» parallélisme de données.

> pas de connaissances nécessaires sur les processus légers.
» on spécifie des taches, pas des processus légers.

» parallélisme emboité, récursivité.

» portabilité.

TBB / Programmation direct des fils.

» TBB Beaucoup plus léger : mécanisme des fils caché.

» Pratiquement pas de gestion de verrous avec TBB .

Ce que c'est, ce que ce n'est pas

> repose sur des processus légers (threads),

» parallélisme de données.

> pas de connaissances nécessaires sur les processus légers.
» on spécifie des taches, pas des processus légers.

» parallélisme emboité, récursivité.

» portabilité.

TBB / Programmation direct des fils.

» TBB Beaucoup plus léger : mécanisme des fils caché.

» Pratiquement pas de gestion de verrous avec TBB .

TBB / OMP.

» TBB : uniquement C++.

» OMP « An excellent Fortran-style code written in C » ...
méme s'il y a de la gestion de tiches dans les derniéres
versions de OMP .

> La récursivité est centrale dans TBB , alors que OMP est
plutdt statique.
Récursivité => passage a |'échelle.

TBB / OMP.

» TBB : uniquement C++.

» OMP « An excellent Fortran-style code written in C » ...
méme s'il y a de la gestion de tiches dans les derniéres
versions de OMP .

> La récursivité est centrale dans TBB , alors que OMP est
plutdt statique.
Récursivité => passage a |'échelle.

L'apprentissage de TBB est simple : on se concentre sur des
concepts de haut niveau.

Penser pour TBB.

Décomposition : en taches qui peuvent tourner en méme temps.

Passage a |'échelle : le nombre de taches doit croitre quand la taille
du probléme augmente.

Ne pas penser aux verrous, et rarement a la synchronisation.

Bien siir, TBB ne simplifie pas les problémes de partage de données
(« thread safety »).

Mais pourquoi t'intéresses tu a ca?

Mais pourquoi t'intéresses tu a ca?

Parce que je n'ai pas d'autre solution.

Mais pourquoi t'intéresses tu a ca?

Parce que je n'ai pas d'autre solution. Parce que TBB résout
élégamment le probléme de I'équilibrage des charges.

Mais pourquoi t'intéresses tu a ca?

Parce que je n'ai pas d'autre solution. Parce que TBB résout
élégamment le probléme de I'équilibrage des charges.

Un premier exemple trés concret.

%(X, t) —e A ui(x,t) = fi(ui(x,t),...,um(x,t)),

ot
1<i<m,xeq,

ui(x,0) = u?(x), 1<i<m,xeq.

Mais pourquoi t'intéresses tu a ca?

Parce que je n'ai pas d'autre solution. Parce que TBB résout
élégamment le probléme de I'équilibrage des charges.

Un premier exemple trés concret.

%(X, t) —e A ui(x,t) = fi(ui(x,t),...,um(x,t)),

ot
1<i<m,xeq,
ui(x,0) = u9(x), 1<i<m,xeq.

Systéeme de Réaction—Diffusion (chimie, médecine...).

Mais pourquoi t'intéresses tu a ca?

Parce que je n'ai pas d'autre solution. Parce que TBB résout
élégamment le probléme de I'équilibrage des charges.

Un premier exemple trés concret.

%?(X, t) —e Aui(x,t) = fi(ui(x, t),..., um(x 1)),

1<i<m,xeq,
ui(x,0) = u9(x), 1<i<m,xeq.

Systéeme de Réaction—Diffusion (chimie, médecine...).

Découper en deux blocs élémentaires :

1. Le premier sous-probléme :

ou;

E(X, t) —ei A ui(x,t)=0.i=1,..n

fait apparaitre un parallélisme du pauvre (n taches
indépendantes) ; mais |'exécution de chaque tache peut créer
du parallélisme de taches (exemple : produits

matrice x vecteur).

1. Le premier sous-probléme :

ou;

E(X, t) —ei A ui(x,t)=0.i=1,..n

fait apparaitre un parallélisme du pauvre (n taches
indépendantes) ; mais |'exécution de chaque tache peut créer
du parallélisme de taches (exemple : produits

matrice x vecteur).

2. Le second sous probléme :

Ou;

i (x,t) = fi(ui(x, t), ..., um(x,t)), i=1,..n.

fait apparaitre un parallélisme colossal : autant de systémes
d’'EDOs a résoudre que de points dans la grille de
discrétisation.

1. Le premier sous-probléme :

ou;

E(X, t) — & A U,’(X, t) =0./i= 1, ..n.

fait apparaitre un parallélisme du pauvre (n taches
indépendantes) ; mais |'exécution de chaque tache peut créer
du parallélisme de taches (exemple : produits

matrice x vecteur).

2. Le second sous probléme :

Ou;

i (x,t) = fi(ui(x, t), ..., um(x,t)), i=1,..n.

fait apparaitre un parallélisme colossal : autant de systémes
d’'EDOs a résoudre que de points dans la grille de
discrétisation.

=> taches= paquets de points? taille des paquets? TBB fait
¢a pour vous.

L'autre probléeme

aazi(x, t) = fi(ui(x, t),...,um(x,t)), i=1,..n.

L'autre probléeme

Ou;

o (x,t) = fi(ur(x,t),...,um(x,t)), i=1,..n.

Réaction de
Belousov-Zhabotinsky
(Ondes spirales).

L'autre probléeme

%(X, t) = fi(ui(x, t),...,um(x,t)), i=1,..n

Réaction de
Belousov-Zhabotinsky
(Ondes spirales).

Zones a |'équilibre (codit de la résolution du systéme d'EDOs faible)
et zones loin de I'équilibre (cot élevé). => difficile de faire un
équilibrage des charges a-priori; TBB fait ¢ca pour vous.

Différents types de parallélisme

1. Parallélisme par les données.
Appliquer la méme transformation a tous les éléments d'un
ensemble, quand les transformations sont indépendantes.

Différents types de parallélisme

1. Parallélisme par les données.
Appliquer la méme transformation a tous les éléments d'un
ensemble, quand les transformations sont indépendantes.

2. Parallélisme par les taches.
Graphe de dépendance de taches; regroupement pour le
parallélisme de données.

Différents types de parallélisme

1. Parallélisme par les données.
Appliquer la méme transformation a tous les éléments d'un
ensemble, quand les transformations sont indépendantes.

2. Parallélisme par les taches.
Graphe de dépendance de taches; regroupement pour le
parallélisme de données.

3. Pipeline.
Appliquer plusieurs traitements successifs & une collection
d'objets.

On retrouve tout ¢a dans TBB .

Exemples : des tadches complétement indépendantes.

Produit matrice x vecteur Y = A.X.
for i in[1..N] do

Y =< A,"*.X >
end

TBB : PARALLEL_FOR

static const int n=1000;
double a[n][n],x[n],y[n];

void prod(int n,double *xa,double x[], double y[])

{

for(int line=0;line<n;line++)

double pscal=0.0;

for(int col=0;col<n; col++)
pscal+=a[line][col]*xx[col];

y[line]=pscal;

}

TBB : PARALLEL_FOR

class Mprod{
const int n;
double xxa, *x,xy;
public:

//constructeur:
Mprod(int N, double xxA,double %X, double *Y):

n(N).a(A), x(X).y(Y){}

//constructeur par copie.
Mprod(const Mprod& M):
n(M.n),a(M.a),x(M.x), y(M.y){}

TBB : PARALLEL_FOR

[l faut ajouter une méthode, dont la signature est imposée :

void operator()(const blocked range<size t>& r) con
{
for(int line=r.begin();line<r.end();line++)
{
double pscal=0.0;
for(int col=0;col<n;col++)
pscal+=a[line][col]xx[col];
y[line]=pscal;

}

TBB : PARALLEL_FOR

[l faut ajouter une méthode, dont la signature est imposée :

void operator()(const blocked range<size t>& r) con
{
for(int line=r.begin();line<r.end();line++)
{
double pscal=0.0;
for(int col=0;col<n;col++)
pscal+=a[line|[col]xx[col];
y[line]=pscal;
}
}

maintenant, je peux faire :

parallel for(blocked range<size t>(0,n),
Mprod(n,a,x,y));

... et voilal

TBB : PARALLEL_FOR

Tachons de comprendre.
Décomposition récursive de [0, n[jusqu'a un certain niveau (13,
c'est TBB qui décide).

[0, n[

TBB : PARALLEL_FOR

Tachons de comprendre.
Décomposition récursive de [0, n[jusqu'a un certain niveau (13,
c'est TBB qui décide).

[0, n[
[0,n/2] [n/2, n[

TBB : PARALLEL_FOR

Tachons de comprendre.
Décomposition récursive de [0, n[jusqu'a un certain niveau (13,
c'est TBB qui décide).

[0, n[
[0, n/2] [n/2, n[
[0, n/4] [n/4,n/2] [n/2,3n/4] [3n/4, n]

TBB : PARALLEL_FOR

Tachons de comprendre.
Décomposition récursive de [0, n[jusqu'a un certain niveau (13,
c'est TBB qui décide).

[0, n[
[0,n/2] [n/2, n[
[0, n/4] [n/4,n/2] [n/2,3n/4] [3n/4, n[
etc...

Analysons :
1. parallel_for crée un objet de type Mprod avec l'intervalle
[0, nl.
2. Deux nouveaux objets de type Mprod avec les intervalles
[0,n/2[et [n/2, n[etc... Le constructeur par copie est utilisé.

3. les feuilles terminales sont les tAches indépendantes, qui
n'ont plus qu'a étre exécutées.

TBB : PARALLEL_FOR : commentaires et ajouts.

> le nombre de taches créées est a-priori largement supérieur au
nombre de fils de calcul disponibles,

» |'efficacité ne peut &tre obtenue que si chaque tache crée est
suffisamment codteuse..

TBB : PARALLEL_FOR : commentaires et ajouts.

> le nombre de taches créées est a-priori largement supérieur au
nombre de fils de calcul disponibles,

» |'efficacité ne peut &tre obtenue que si chaque tache crée est
suffisamment codteuse..

d'ol quelques raffinements :

» L'objet de type blocked_range<size_t> contient un
paramétre supplémentaire facultatif :
blocked_range<size_t>(0,n) =>
blocked_range<size_t>(0,n,k)

k limite la descente récursive a des intervalles de taille k.

TBB : PARALLEL_FOR : commentaires et ajouts.

> le nombre de taches créées est a-priori largement supérieur au
nombre de fils de calcul disponibles,

» |'efficacité ne peut &tre obtenue que si chaque tache crée est
suffisamment codteuse..

d'ol quelques raffinements :

» L'objet de type blocked_range<size_t> contient un
paramétre supplémentaire facultatif :
blocked_range<size_t>(0,n) =>
blocked_range<size_t>(0,n,k)

k limite la descente récursive a des intervalles de taille k.
» parallel_for a un 3° argument, facultatif : le partitioner.

Correspond a différents algorithmes pour le partitionnement de
I'intervalle [1, n[. Par défaut, on utilise auto_partitioner.

TBB : PARALLEL_FOR : commentaires et ajouts.

> le nombre de taches créées est a-priori largement supérieur au
nombre de fils de calcul disponibles,

» |'efficacité ne peut &tre obtenue que si chaque tache crée est
suffisamment codteuse..

d'ol quelques raffinements :

» L'objet de type blocked_range<size_t> contient un
paramétre supplémentaire facultatif :
blocked_range<size_t>(0,n) =>
blocked_range<size_t>(0,n,k)

k limite la descente récursive a des intervalles de taille k.

» parallel_for a un 3° argument, facultatif : le partitioner.
Correspond a différents algorithmes pour le partitionnement de
I'intervalle [1, n[. Par défaut, on utilise auto_partitioner.

Note : je n'ai jamais gagné grand chose a utiliser ces raffinements!

Réductions

n—1
Exemple emblématique : le produit scalaire : s = > x.y;.
i=1

Réductions

n—1
Exemple emblématique : le produit scalaire : s = > x.y;.
i=1

double dotprod(int n,double x[],double y[])

double ret=0.0;
for(int i=0;i<n;i++)

ret+=x[i]*xy[i];
return ret

}

Réductions

n—1
Exemple emblématique : le produit scalaire : s = > x.y;.
i=1

double dotprod(int n,double x[],double y[])

double ret=0.0;
for(int i=0;i<n;i++)
ret+=x[i]*xy[i];

return ret

}
TBB va :

» découper l'intervalle [1, n[en sous intervalles (arbre binaire),
» calculer les produits scalaires sur les sous intervalles,

» faire remonter les résultats élémentaires dans |'arbre binaire.

Réductions

n—1
Exemple emblématique : le produit scalaire : s = > x.y;.
i=1

double dotprod(int n,double x[],double y[])

double ret=0.0;
for(int i=0;i<n;i++)
ret+=x[i]*xy[i];

return ret

}
TBB va :

» découper l'intervalle [1, n[en sous intervalles (arbre binaire),
» calculer les produits scalaires sur les sous intervalles,

» faire remonter les résultats élémentaires dans |'arbre binaire.

Ingrédients :
» parallel_reduce,

» une classe pour empaqueter le calcul.

Réductions

class dotprod{

double prod;
double xx,xy;
public:
dotprod (double xX,double xY): x(X),y(Y),
prod (0.0){}
dotprod (dotprod& D, split):x(D.x),y(D.y),
prod (0.0){}

void join(const dotprod& D){prod+=D.prod;}

Réductions

class dotprod{

double prod;
double xx,xy;
public:
dotprod (double xX,double xY): x(X),y(Y),
prod (0.0){}
dotprod (dotprod& D, split):x(D.x),y(D.y),
prod (0.0){}

void join(const dotprod& D){prod+=D.prod;}

Bien remarquer :

» la deuxiéme méthode n'est pas un constructeur de copie :
I'argument split est |la pour le marquer.

> c'est bien siir join qui fait la réduction.

Réductions

Il reste a écrire I'opérateur qui calcule les produits scalaires sur les
sous intervalles.

void operator()(const blocked range<size t>& r)

{
prod=0.0;

for(size t i=r.begin();i<r.end();i++)
prod+=x[i]xy[i];

double result() const {return prod;}

Réductions

Il reste a écrire I'opérateur qui calcule les produits scalaires sur les
sous intervalles.

void operator()(const blocked range<size t>& r)

{
prod=0.0;

for(size t i=r.begin();i<r.end();i++)
prod+=x[i]xy[i];

double result() const {return prod;}
L'utilisation :

dotprod prod(x,y);
parallel reduce(blocked range<size t>(0,n),prod);
double prodscal=prod.result ();

Réductions : commentaires

dotprod prod(x,y);

parallel reduce(blocked range<size t>(0,n),prod);
double prodscal=prod.result ();

1. parallel_reduce regoit une référence a prod.

2. lors de la remontée de I'arbre binaire, join met a jour prod
des fils vers le pére.

3. Méme remarques que pour parallel_for : on peux limiter la
taille des grains et/ou préciser un partitioneur.

Les Ranges
Ona:

> blocked_range

» blocked_range2d : opére sur des produits cartésiens de deux
intervalles semi ouverts.

Les Ranges
Ona:

> blocked_range

» blocked_range2d : opére sur des produits cartésiens de deux
intervalles semi ouverts.

En fait ces deux types (templates) sont des modéles de Range. On
peut fabriquer ses propres Range a condition de se conformer au
concept de Range.

Les Ranges

Le concept de Range

R(const R&)

“R(O)

empty () const

is divisible() const

R(R& r,split)

Les Ranges

Le concept de Range

R(const R&)

“R(O)

empty () const

is divisible() const

R(R& r,split)

La derniére méthode découpe r en deux Range. split est une
classe (qui ne fait rien, vide), pour ne pas confondre la méthode
avec un constructeur de copie.

Note : c'est vraiment du C++.

Retour a une probléme précédemment évoqué

ou;

E(X’ t)—ei A ui(x,t)=0.i=1,..n

Retour a une probléme précédemment évoqué

ou;

a(x, t) —ei A ui(x,t)=0.i=1,..n

En fait cela revient, aprés discrétisation, a résoudre :

dU;
dt

ol les A; sont des matrices et les U; de grands vecteurs.

(t)= AU, i=1,n.

Retour a une probléme précédemment évoqué

En fait cela revient, aprés discrétisation, a résoudre :

dU;
dt

ol les A; sont des matrices et les U; de grands vecteurs.

(t)= AU, i=1,n.

En général, il faut, pour chaque équation (i = 1, n), résoudre des
systémes linéaires avec A; => (avec des méthodes itératives) :

Retour a une probléme précédemment évoqué

En fait cela revient, aprés discrétisation, a résoudre :

dU;
dt

ol les A; sont des matrices et les U; de grands vecteurs.

(t)= AU, i=1,n.

En général, il faut, pour chaque équation (i = 1, n), résoudre des
systémes linéaires avec A; => (avec des méthodes itératives) :
1. calculer des produits matrice x vecteur avec A;,
2. effectuer des produits scalaires

3. en nombre qui peut dépendre de i .

Retour a une probléme précédemment évoqué
Deux niveaux de parallélisme

1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1) ,MesEquations)

Retour a une probléme précédemment évoqué
Deux niveaux de parallélisme
1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1) ,MesEquations)

2. puis pour chaque équation, lancer les méthodes itératives, qui
vont faire des produits matrice x vecteur (parallel_for!) et
des produits scalaires (parallel_for!).

Retour a une probléme précédemment évoqué
Deux niveaux de parallélisme
1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1) ,MesEquations)

2. puis pour chaque équation, lancer les méthodes itératives, qui
vont faire des produits matrice x vecteur (parallel_for!) et
des produits scalaires (parallel_for!).

> pas de synchronisation a gérer,

» bonne occupation des fils.

Conteneurs

Une tentative pour faire (une partie d')une STL paralléle.
La STL ne permet pas d’accés concurrent aux conteneurs =>
utilisation de verrous.

Conteneurs

Une tentative pour faire (une partie d')une STL paralléle.
La STL ne permet pas d’accés concurrent aux conteneurs =>
utilisation de verrous.
Les conteneurs TBB :
» verrouillage a grain fin.

» algorithmes ne necessitant pas de verrous (7 7).

Plus coliteux que les conteneurs de la STL.

Conteneurs

Une tentative pour faire (une partie d')une STL paralléle.
La STL ne permet pas d’accés concurrent aux conteneurs =>
utilisation de verrous.
Les conteneurs TBB :
» verrouillage a grain fin.

» algorithmes ne necessitant pas de verrous (7 7).
Plus coliteux que les conteneurs de la STL.

» concurrent_queue.
> concurrent_vector.
» concurrent_hash_map.

Par exemple, concurrent_vector permet un agrandissement sans
risque.

Allocation mémoire

Comment faire pour que |'allocation mémoire :
1. passe a I'échelle,
2. concurrente.

3. pas de faux partage.

Allocation mémoire

Comment faire pour que |'allocation mémoire :
1. passe a I'échelle,
2. concurrente.

3. pas de faux partage.
Le faux partage?

double x[1000],y[1000];

le fil 1 écrit en x[999] et le fil 2 écrite en y[0] ET x[999] et
y[0] sont dans la méme ligne de cache. => ¢a marche, mais au
prix d'un ralentissement considérable !

Allocation mémoire

Deux allocateurs :
1. scalable_allocator
2. cache_aligned_allocator.

cache_aligned_allocator=
scalable_allocator + alignement sur les lignes de caches.

Allocation mémoire

Deux allocateurs :
1. scalable_allocator
2. cache_aligned_allocator.

cache_aligned_allocator=
scalable_allocator + alignement sur les lignes de caches.

@ ca craint un peu...

» allocation dans des blocs de mémoire différents.

> les versions anciennes (2011) de TBB fabriquaient du gruyére
de mémoire.

Allouer, désallouer oui,mais pas trop en paralléle.

Exclusion mutuelle

Le style TBB : éviter les MUTEX et autres systémes de verrous.
Si nécessaire : TBB fournit des classes de MUTEX.

Exclusion mutuelle

Le style TBB : éviter les MUTEX et autres systémes de verrous.
Si nécessaire : TBB fournit des classes de MUTEX.

Les opérations atomiques

» beaucoup plus rapides que les mutex.
» uniquement des objets de petite taille (taille d'un double).

> liste des opérations possibles trés limitées.

Opérations atomiques

Déclaration :

atomic<T> x

Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat

=x lire la valeur de x

X= affecter une valeur a x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne |'ancienne valeur de x

x.compare_and_swap(y,z) si x==z, x=y
retourne |'ancienne valeur de x.

Opérations atomiques

Déclaration :

atomic<T> x

Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat

=x lire la valeur de x

X= affecter une valeur a x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne |'ancienne valeur de x

x.compare_and_swap(y,z) si x==z, x=y
retourne |'ancienne valeur de x.
t+, -, +=,-= réalisées avec les opérations ci-dessus.

s

Opérations atomiques

Déclaration :

atomic<T> x

Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat

=x lire la valeur de x

x= affecter une valeur a x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne |'ancienne valeur de x

x.compare_and_swap(y,z) si x==z, x=y
retourne |'ancienne valeur de x.
t+, -, +=,-= réalisées avec les opérations ci-dessus.

s

Exemple : static atomic<int> counter
dans une classe passée a parallel_for.
@ Forcément, ca colite un peu.

Installation et mise en ceuvre

Installation

» Compilateur Intel : livrée avec.

» g+ ou autre : téléchargement du source et installation
(Makefile).
Le source contient des tests et des exemples.

Il y a des mises a jour fréquentes : la bibliothéque évolue.
Pour les masochistes : ca marche méme sous Windows !.

Installation et mise en ceuvre

Mise en ceuvre

Dans le préambule :
» #include "tbb/tbb.h"
> using namespace tbb;
Dans main :
task_scheduler_init init ;< nombre de fils est choisi par
TBB .
ou
task_scheduler_init init(5);// « limité a 5 fils.
» On peut donc tester le programme en séquentiel, mais avec le
mécanisme de TBB .
» on peut mesurer le passage a I'échelle.

Installation et mise en ceuvre

Mise en ceuvre

Dans le préambule :
» #include "tbb/tbb.h"
> using namespace tbb;
Dans main :
task_scheduler_init init ;< nombre de fils est choisi par
TBB .
ou
task_scheduler_init init(5);// « limité a 5 fils.
» On peut donc tester le programme en séquentiel, mais avec le
mécanisme de TBB .
» on peut mesurer le passage a I'échelle.

Edition des liens :

» -1tbb -1ltbbmalloc_proxy -ltbbmalloc
» il existe une version debug de tbbmalloc.

(sur

and Frames|

@ Elapsed Time: 8.352s

univ-lyond.r)

ol Thread Count: 15
Overhead Time: 00505
Spin Tme:
139705
Paused Time:
® Top Hotspots
ris appication. Optimizing improving veral apph
perfomance
Funcion Py Tme
MativectorProduct<(n)128, (m)128> 1207805
Varivectorproduct<(n)125, (m)128> 100605
(TBB Dispatch Loop] 0.0505
_INTERNAL_27___src_tbh_scheduler_cpp_ 04525d12:_TBB_mactine_pause 00505
_partion_t Lor o020
thers]
® CPU Usage Histogram
Time. - o wnring
simulancausly. CPU Usage may be higher han the thread concurrency i a tread is excouting cod on a CPU whi i logically wating
85 :
, o8 ‘5
E s1s &
£ 2
‘g 345
LIFEN
T 1 7 3 4 5 5 7 § 5 © U T T U T 1 T B
e o
3 o

o
‘simukaneously Urlized Logical CPUS

@ Collection and Platform Info
his secton

Application Command Line: run
26.32:431.5.1.016.X86_64 CentOS release 65 (Final)

d collection petform data.

Operating System:

Computer Name: cluster15-math.univ-yonfr
Result Size: 2uB

6 ¢ LRI
= prrm—

Grouping: _Function Call Stack

> MatrivectorProduct<(in)128, (n9128> | 1006051 n oid MatrixVectorProducts(in)128, (In)128>forranAray<(in1) 125, (in)126> consic., doubler, forral runiMP<(in)128, (in)1L28>:0pe.
»(TBB Dispatch Loop] 0.0505| 00505 libtbh s0.2 ¥ | wait for_alltob:taski] nuyinterfacesinteral:pa.
o T | oebas et o, s s ooz, 188, S, Pt st et .
thinteriaoed:internal:pariion type_bay 0.020s] Loype. | »_partiion_yp ibtbb.so.2([TBE Dispaich Loop]
o s s ey
. o T
P —
easasor s e
Selected 1 row(s): 121.780s 0s
; o :
(
o
e B
- BB Worker ample
| =
| [TBB Worker ik CPU Time
Ehe z
=
==
o
o T A

Only user funcions |~ AR on] Functons only

<no current p

Vtune sur le Xeon-Phi

@ B2 b ecome [PTN e impiner
/® Hotspots Hotspots viewpoint (change) @

@ Elapsed Time: 15.015s = E

cpu Time: 220,000
Instuctons Retred: 384:570,000000
cPiRate 7409
The CP1 y branch misprecicion orong
CPU Frequency Ratio: 1000
Paused Time: o5
Overnead Time: ooses
Spin Time: o019
® Top Hotspots
Thissecton applcation.Opimizing improving overal apph
performance.
Funcion Py Time
{Loop atine 22 n MatrxvectorProduct] za0m.203
Lo type. partition_ 1485555
i) 1319095
{Loop atne 16 n MatrxvectorProduct] 72158
[Loop atline 176 i TBE Scheduer nernais] arams
) 2
® CPU Usage Histogram N
g

Time. of
simulianeously. CPU Usage may be higher than the thread concurrency ifa thread i execuling code on a CPU while s logically waitng
655

0T w @ o1 w0 & 2 1% 1@ 1 6 192 2% 2 a0 T I

&)
‘Simuaneously Utized Logical CPUS

® Collection and Platform Info
This secion

collecion piatform data

Vtune sur le Xeon-Phi

LlEise]

@i el bE o

~ el

Grouping: _Source Funcion | Function | Cal Stack

@ =
‘Source Function ! Functon / Call Stack Overnee) CRY) Source i
[Loop atne 22 in Mt

clorProducis]

3.350,000,000]

MaiectorProducs ool 0
Loop ManectorProdictspp 0
» umiinux) '31,040,000,000 0s 4472 1000 o
> [Loop at ne 16 n MatvectorProducte] 22510000000 o ams 1000 MatrxvectorProducts hpp 0 J
»[Loop at line 176 in [TBB Scheduler Internals]] 1,580,000,000 0s| 31.614. 1.000 custom_scheduler.
>lLoop atlne: *ype 1,860,000,000 o am 1000 Matrxvectorproducts hpp 0
»forranArray=(int) 128, (int)128>::data 260,000,000 0s| 21462 1.000 fortranArray.hpp. 0
»{Loop a ne 74 in rmi:iternal:BoorSrapBlocks:alocate] o o oo 1000 6, machinen o
»[Loop at line 14 in MatrixVectorProductB] 410,000,000 0s| 12.439 1.000 MatrixVectorProductB.hpp 0
libe-2.14.90.s0] 250000000 o aa00 1000
»[Loop at line 676 in [TBB Scheduler Internals]] 30,000,000 0s| 29.667 1.000 ‘scheduler.cpp o
> tobimemal:market:arena_in_need os63s| o s oo 1000 marketcpp o
(788 Scheduler nernals] 05515 60000000 o 9c67 1000 schedlercpp o
»(Loop at e e 05513 50000000 s 1600 1000 forrnanay hpp o
> MarrvectorProducis 0a7s| 100000000 o 390 1000 MatrxvectorProducts hpp 0
*Loop at line 77 in [TBB Scheduler Internals]] 0.2855| 10,000,000 0s 30000 1000 scheduler.cpp o
4 Selected 1 row(s): 2297.2435. '303,350,000,000
oI}
To00y 15 LS00 %5 DS00S 3o SOUOE o ASODE %5 SO0 85 G0 15

75005 85 Bo003 5

Conclusion

» facile et agréable a utiliser,
» pas forcément facile & déboguer,

» un outil de mesures de performances est bien venu (VTune).

Conclusion

» facile et agréable a utiliser,
» pas forcément facile & déboguer,

» un outil de mesures de performances est bien venu (VTune).

Merci |

