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Une autre manière de concevoir le parallélisme en
mémoire partagée.

I TBB est une bibliothèque (pas d’ajout au langage (pragma
etc.)).

I Du C++ standard, rien que du C++ .
I Mais tout le C++ (templates, λ-fonctions.).
I Développement débuté en 2004.

Développée par Intel.
Deux licences :

I GPLv2.
I Licence commerciale avec support.

(livrée avec le compilateur Intel).

Documentation :
I En ligne.
I Livre chez O’Reilly.
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Ce que c’est, ce que ce n’est pas
I repose sur des processus légers (threads),
I parallélisme de données.
I pas de connaissances nécessaires sur les processus légers.
I on spécifie des tâches, pas des processus légers.
I parallélisme emboîté, récursivité.
I portabilité.

TBB / Programmation direct des fils.

I TBB Beaucoup plus léger : mécanisme des fils caché.
I Pratiquement pas de gestion de verrous avec TBB .
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TBB / OMP.

I TBB : uniquement C++.
I OMP « An excellent Fortran-style code written in C »...

même s’il y a de la gestion de tâches dans les dernières
versions de OMP .

I La récursivité est centrale dans TBB , alors que OMP est
plutôt statique.
Récursivité => passage à l’échelle.

L’apprentissage de TBB est simple : on se concentre sur des
concepts de haut niveau.
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Penser pour TBB.
Décomposition : en tâches qui peuvent tourner en même temps.
Passage à l’échelle : le nombre de tâches doit croître quand la taille

du problème augmente.
Ne pas penser aux verrous, et rarement à la synchronisation.

Bien sûr, TBB ne simplifie pas les problèmes de partage de données
(« thread safety »).



Mais pourquoi t’intéresses tu à ça ?

Parce que je n’ai pas d’autre solution. Parce que TBB résout
élégamment le problème de l’équilibrage des charges.

Un premier exemple très concret.
∂ui

∂t
(x , t)− ε ∆ ui (x , t) = fi (u1(x , t), . . . , um(x , t)),

1 ≤ i ≤ m, x ∈ Ω,

ui (x , 0) = u0
i (x), 1 ≤ i ≤ m, x ∈ Ω.

Système de Réaction–Diffusion (chimie, médecine...).
Découper en deux blocs élémentaires :

1.
∂ui

∂t
(x , t)− εi ∆ ui (x , t) = 0. i = 1, ..n.

2.
∂ui

∂t
(x , t) = fi (u1(x , t), . . . , um(x , t)), i = 1, ..n.
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1. Le premier sous-problème :

∂ui

∂t
(x , t)− εi ∆ ui (x , t) = 0. i = 1, ..n.

fait apparaître un parallélisme du pauvre (n tâches
indépendantes) ; mais l’exécution de chaque tâche peut créer
du parallélisme de tâches (exemple : produits
matrice x vecteur).

2. Le second sous problème :

∂ui

∂t
(x , t) = fi (u1(x , t), . . . , um(x , t)), i = 1, ..n.

fait apparaître un parallélisme colossal : autant de systèmes
d’EDOs à résoudre que de points dans la grille de
discrétisation.
=> tâches= paquets de points ? taille des paquets ? TBB fait
ça pour vous.
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L’autre problème

∂ui

∂t
(x , t) = fi (u1(x , t), . . . , um(x , t)), i = 1, ..n.

Réaction de
Belousov-Zhabotinsky

(Ondes spirales).

Zones à l’équilibre (coût de la résolution du système d’EDOs faible)
et zones loin de l’équilibre (coût élevé). => difficile de faire un
équilibrage des charges à-priori ; TBB fait ça pour vous.
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Différents types de parallélisme
1. Parallélisme par les données.

Appliquer la même transformation à tous les éléments d’un
ensemble, quand les transformations sont indépendantes.

2. Parallélisme par les tâches.
Graphe de dépendance de tâches ; regroupement pour le
parallélisme de données.

3. Pipeline.
Appliquer plusieurs traitements successifs à une collection
d’objets.

On retrouve tout ça dans TBB .
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Exemples : des tâches complètement indépendantes.
Produit matrice x vecteur Y = A.X .
for i in [1..N] do

Yi =< Ai ,∗.X >
end



TBB : parallel_for

s t a t i c con s t i n t n=1000;
doub l e a [ n ] [ n ] , x [ n ] , y [ n ] ;
. . . . . .

v o i d prod ( i n t n , doub l e ∗∗a , doub l e x [ ] , doub l e y [ ] )
{

f o r ( i n t l i n e =0; l i n e <n ; l i n e++)
{

doub l e p s c a l =0.0 ;
f o r ( i n t c o l =0; co l<n ; c o l++)

p s c a l+=a [ l i n e ] [ c o l ]∗ x [ c o l ] ;
y [ l i n e ]= p s c a l ;

}
}



TBB : parallel_for

c l a s s Mprod{
con s t i n t n ;
doub l e ∗∗a , ∗x ,∗ y ;

p u b l i c :

// c o n s t r u c t e u r :
Mprod ( i n t N, doub l e ∗∗A, doub l e ∗X, doub l e ∗Y) :

n (N) , a (A) , x (X) , y (Y){}

// c o n s t r u c t e u r par c op i e .
Mprod ( con s t Mprod& M) :

n (M. n ) , a (M. a ) , x (M. x ) , y (M. y ){}



TBB : parallel_for
Il faut ajouter une méthode, dont la signature est imposée :

v o i d o p e r a t o r ( ) ( con s t b locked_range<s i ze_t>& r ) con s t
{

f o r ( i n t l i n e=r . beg i n ( ) ; l i n e <r . end ( ) ; l i n e++)
{

doub l e p s c a l =0.0 ;
f o r ( i n t c o l =0; co l<n ; c o l++)

p s c a l+=a [ l i n e ] [ c o l ]∗ x [ c o l ] ;
y [ l i n e ]= p s c a l ;

}
}

maintenant, je peux faire :

p a r a l l e l _ f o r ( b locked_range<s ize_t >(0 ,n ) ,
Mprod (n , a , x , y ) ) ;

... et voilà !
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TBB : parallel_for
Tâchons de comprendre.
Décomposition récursive de [0, n[ jusqu’à un certain niveau (là,
c’est TBB qui décide).

[0, n[

[0, n/2[ [n/2, n[
[0, n/4[ [n/4, n/2[ [n/2, 3n/4[ [3n/4, n[

etc...

Analysons :
1. parallel_for crée un objet de type Mprod avec l’intervalle

[0, n[.
2. Deux nouveaux objets de type Mprod avec les intervalles

[0, n/2[ et [n/2, n[ etc... Le constructeur par copie est utilisé.
3. les feuilles terminales sont les tâches indépendantes, qui

n’ont plus qu’à être exécutées.
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TBB : parallel_for : commentaires et ajouts.
I le nombre de tâches créées est à-priori largement supérieur au

nombre de fils de calcul disponibles,
I l’efficacité ne peut être obtenue que si chaque tâche crée est

suffisamment coûteuse..

d’où quelques raffinements :
I L’objet de type blocked_range<size_t> contient un

paramètre supplémentaire facultatif :
blocked_range<size_t>(0,n) =>
blocked_range<size_t>(0,n,k)
k limite la descente récursive à des intervalles de taille k.

I parallel_for a un 3e argument, facultatif : le partitioner.
Correspond à différents algorithmes pour le partitionnement de
l’intervalle [1, n[. Par défaut, on utilise auto_partitioner.

Note : je n’ai jamais gagné grand chose à utiliser ces raffinements !
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Réductions

Exemple emblématique : le produit scalaire : s =
n−1∑
i=1

xi .yi .

doub l e dotprod ( i n t n , doub l e x [ ] , doub l e y [ ] )
{

doub l e r e t =0.0 ;
f o r ( i n t i =0; i<n ; i++)

r e t+=x [ i ]∗ y [ i ] ;
r e t u r n r e t

}

TBB va :
I découper l’intervalle [1, n[ en sous intervalles (arbre binaire),
I calculer les produits scalaires sur les sous intervalles,
I faire remonter les résultats élémentaires dans l’arbre binaire.

Ingrédients :
I parallel_reduce,
I une classe pour empaqueter le calcul.
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Ingrédients :
I parallel_reduce,
I une classe pour empaqueter le calcul.
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Réductions

c l a s s dotprod {
doub l e prod ;
doub l e ∗x ,∗ y ;

p u b l i c :
dotprod ( doub l e ∗X, doub l e ∗Y) : x (X) , y (Y) ,

prod ( 0 . 0 ) {}

dotprod ( dotprod& D, s p l i t ) : x (D. x ) , y (D. y ) ,
prod ( 0 . 0 ) {}

vo i d j o i n ( con s t dotprod& D){ prod+=D. prod ; }

Bien remarquer :
I la deuxième méthode n’est pas un constructeur de copie :

l’argument split est là pour le marquer.
I c’est bien sûr join qui fait la réduction.
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Réductions
Il reste à écrire l’opérateur qui calcule les produits scalaires sur les
sous intervalles.

vo i d op e r a t o r ( ) ( con s t b locked_range<s ize_t>& r )
{

prod =0.0 ;
f o r ( s i z e_t i=r . beg in ( ) ; i<r . end ( ) ; i++)

prod+=x [ i ]∗ y [ i ] ;
}

doub l e r e s u l t ( ) con s t { r e t u r n prod ; }

L’utilisation :

dotprod prod ( x , y ) ;
p a r a l l e l_ r e d u c e ( blocked_range<s ize_t >(0 ,n ) , prod ) ;
doub l e p r o d s c a l=prod . r e s u l t ( ) ;
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Réductions : commentaires

dotprod prod ( x , y ) ;
p a r a l l e l_ r e d u c e ( blocked_range<s ize_t >(0 ,n ) , prod ) ;
doub l e p r o d s c a l=prod . r e s u l t ( ) ;

1. parallel_reduce reçoit une référence à prod.
2. lors de la remontée de l’arbre binaire, join met à jour prod

des fils vers le père.
3. Même remarques que pour parallel_for : on peux limiter la

taille des grains et/ou préciser un partitioneur.



Les Ranges
On a :

I blocked_range
I blocked_range2d : opère sur des produits cartésiens de deux

intervalles semi ouverts.

En fait ces deux types (templates) sont des modèles de Range. On
peut fabriquer ses propres Range à condition de se conformer au
concept de Range.
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Les Ranges

Le concept de Range

R( con s t R&)
~R( )
empty ( ) con s t
i s _ d i v i s i b l e ( ) con s t
R(R& r , s p l i t )

La dernière méthode découpe r en deux Range. split est une
classe (qui ne fait rien, vide), pour ne pas confondre la méthode
avec un constructeur de copie.

Note : c’est vraiment du C++.
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Retour a une problème précédemment évoqué

∂ui

∂t
(x , t)− εi ∆ ui (x , t) = 0. i = 1, ..n.

En fait cela revient, après discrétisation, à résoudre :

dUi

dt
(t) = AiUi , i = 1, n.

où les Ai sont des matrices et les Ui de grands vecteurs.

En général, il faut, pour chaque équation (i = 1, n), résoudre des
systèmes linéaires avec Ai => (avec des méthodes itératives) :

1. calculer des produits matrice x vecteur avec Ai ,
2. effectuer des produits scalaires
3. en nombre qui peut dépendre de i .
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Retour a une problème précédemment évoqué
Deux niveaux de parallélisme

1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1),MesEquations);

2. puis pour chaque équation, lancer les méthodes itératives, qui
vont faire des produits matrice x vecteur (parallel_for !) et
des produits scalaires (parallel_for ! ).

I pas de synchronisation à gérer,
I bonne occupation des fils.



Retour a une problème précédemment évoqué
Deux niveaux de parallélisme

1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1),MesEquations);

2. puis pour chaque équation, lancer les méthodes itératives, qui
vont faire des produits matrice x vecteur (parallel_for !) et
des produits scalaires (parallel_for ! ).

I pas de synchronisation à gérer,
I bonne occupation des fils.



Retour a une problème précédemment évoqué
Deux niveaux de parallélisme

1. sur les équations :
parallel_for(blocked_range<size_t>(0,n-1),MesEquations);

2. puis pour chaque équation, lancer les méthodes itératives, qui
vont faire des produits matrice x vecteur (parallel_for !) et
des produits scalaires (parallel_for ! ).

I pas de synchronisation à gérer,
I bonne occupation des fils.



Conteneurs
Une tentative pour faire (une partie d’)une STL parallèle.
La STL ne permet pas d’accès concurrent aux conteneurs =>
utilisation de verrous.

Les conteneurs TBB :

I verrouillage à grain fin.
I algorithmes ne necessitant pas de verrous ( ? ?).

Plus coûteux que les conteneurs de la STL.

I concurrent_queue.
I concurrent_vector.
I concurrent_hash_map.

Par exemple, concurrent_vector permet un agrandissement sans
risque.
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Allocation mémoire
Comment faire pour que l’allocation mémoire :
1. passe à l’échelle,
2. concurrente.
3. pas de faux partage.

Le faux partage ?

doub l e x [ 1 0 0 0 ] , y [ 1 0 0 0 ] ;

le fil 1 écrit en x[999] et le fil 2 écrite en y[0] ET x[999] et
y[0] sont dans la même ligne de cache. => ça marche, mais au
prix d’un ralentissement considérable !



Allocation mémoire
Comment faire pour que l’allocation mémoire :
1. passe à l’échelle,
2. concurrente.
3. pas de faux partage.

Le faux partage ?

doub l e x [ 1 0 0 0 ] , y [ 1 0 0 0 ] ;

le fil 1 écrit en x[999] et le fil 2 écrite en y[0] ET x[999] et
y[0] sont dans la même ligne de cache. => ça marche, mais au
prix d’un ralentissement considérable !



Allocation mémoire
Deux allocateurs :
1. scalable_allocator

2. cache_aligned_allocator.
cache_aligned_allocator=
scalable_allocator + alignement sur les lignes de caches.

� ça craint un peu...

I allocation dans des blocs de mémoire différents.
I les versions anciennes (2011) de TBB fabriquaient du gruyère

de mémoire.

Allouer, désallouer oui,mais pas trop en parallèle.
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Exclusion mutuelle
Le style TBB : éviter les mutex et autres systèmes de verrous.
Si nécessaire : TBB fournit des classes de mutex.

Les opérations atomiques

I beaucoup plus rapides que les mutex.
I uniquement des objets de petite taille (taille d’un double).
I liste des opérations possibles très limitées.
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Opérations atomiques
Déclaration :
atomic<T> x
Exemple : atomic<int> x
On a les opérations suivantes :

Opération Résultat
=x lire la valeur de x
x= affecter une valeur à x
x.fetch_and_store(y) x=y et retourne la valeur de x
x.fetch_and_add(y) x+=y et retourne l’ancienne valeur de x
x.compare_and_swap(y,z) si x==z, x=y

retourne l’ancienne valeur de x.

++, –-,+=,-= réalisées avec les opérations ci-dessus.

Exemple : static atomic<int> counter
dans une classe passée à parallel_for.
� Forcément, ça coûte un peu.
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Installation et mise en œuvre

Installation

I Compilateur Intel : livrée avec.
I g++ ou autre : téléchargement du source et installation

(Makefile).
Le source contient des tests et des exemples.

Il y a des mises à jour fréquentes : la bibliothèque évolue.
Pour les masochistes : ça marche même sous Windows !.



Installation et mise en œuvre

Mise en œuvre

Dans le préambule :
I #include "tbb/tbb.h"
I using namespace tbb;

Dans main :
task_scheduler_init init;← nombre de fils est choisi par
TBB .
ou
task_scheduler_init init(5);// ← limité à 5 fils.

I On peut donc tester le programme en séquentiel, mais avec le
mécanisme de TBB .

I on peut mesurer le passage à l’échelle.

Édition des liens :

I -ltbb -ltbbmalloc_proxy -ltbbmalloc
I il existe une version debug de tbbmalloc.
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Conclusion
I facile et agréable à utiliser,
I pas forcément facile à déboguer,
I un outil de mesures de performances est bien venu (VTune).

Merci !
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