
APPLICATIONS &

PERFORMANCE TEAM

Gunter Roeth
Applications Engineer

Applications & Performance Team

Extreme Computing Business Unit

Lyon – 25 Feb 2014

Guider le compilateur pour optimiser
la performance de vos applications.

PLAN

1. COMPILATEURS POUR LE CALCUL HAUTE PERFORMANCE

2. OPTIONS DE COMPILATION GNU/INTEL

3. AVX INSTRUCTION SET (VECTORISATION)

4. BANDE PASSANTE MEMOIRE

5. MODÈLE ROOFLINE

6. FIRST TOUCH POLICY

7. ALIGNEMENT

8. EXEMPLES: BOUCLE TYPIQUE ET DIFFÉRENCES FINIS

9. CONCLUSIONS

Lyon – 25 Feb 2014

FORTRAN AND C/C++ COMPILERS

Lyon – 25 Feb 2014

Freeware
• GNU Fortran and C/C++ compilers : gfortran, gcc, g++ are popular

gnu.org

• Oracle Solaris Studio
oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html

• Open64
• Not too good, and not very clear about license free
open64.net

Proprietary
• Intel

intel.com

• NVIDIA bought Portland Group
pgroup.com

• Absoft, Cray, IBM, NAG, PathScale

USER PROGRAM DEVELOPMENT

Lyon – 25 Feb 2014

From equations to simulations

• Choose a high level programming language (C,C++, Fortran) avoid scripting.
• Design the program flow

• Try to keep the program modular.
• Write validation routines, not only for toy cases :

• Seismic may check amplitudes/frequencies …
• Avoid absolute reference results obtained through simulation

• Write performance (timer) measurements around the kernels.
• Use several compilers

GNU COMPILERS OPTIMIZATIONS

Lyon – 25 Feb 2014

Very popular compiler and tools
GNU GCC 4.7 March 2012 latest version : GCC 4.8

• Needs the latest mtune/march/with-cpu options available designed for AVX and Intel's

newest CPUs.
• –mtune=corei7-avx –mavx
• Build with --with-mfpmath=avx to use AVX floating-point arithmetic

• Most optimizations are only enabled if an -O level is set on the command line.
• optimization with very conservative defaults
• O and –O2 will not increase the code size, and work everywhere
• gfortran/gcc auto-vectorization needs –O3
• Profile feedback available

GNU COMPILERS AGGRESSIVE OPTIONS

Lyon – 25 Feb 2014

-ffast-math
• Allows mathematical simplifications for computations.
• May be needed for vectorization.

-ftree-loop-distribution, -ftree-vectorize

• Perform loop distribution : one loop is distributed into several smaller loops.
• allow further loop optimizations, like parallelization or vectorization, to take place.

-ftree-vectorizer-verbose=2
• vectorization report

C may need the restrict qualifier for the pointers and intrinsic __builtin_assume_aligned
void test4(double * restrict a, double * restrict b)

{

int i;

double *x = __builtin_assume_aligned(a, 16);

double *y = __builtin_assume_aligned(b, 16);

for (i = 0; i < SIZE; i++) { x[i] += y[i]; }

}

GNU COMPILERS LOOP OPTIMIZATIONS

Lyon – 25 Feb 2014

To use this code transformation, GCC has to be configured with --with-ppl and --with-cloog to enable the Graphite
loop transformation infrastructure.

-floop-interchange
 Perform loop interchange transformations on loops.
-floop-strip-mine (use with loop-block-tile-size parameter for striplength)
 Loop blocking of a single loop. Strip mining splits a loop into two nested loops. The outer loop has strides equal
to the strip size and the inner loop has strides of the original loop within a strip.
-floop-block
 Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the
memory accesses of the element loops fit inside caches.

DO II = 1, N, 51

 DO JJ = 1, M, 51

 DO I = II, min (II + 50, N)

 DO J = JJ, min (JJ + 50, M)

 A(J, I) = B(I) + C(J)

 ENDDO

 ENDDO

 ENDDO

ENDDO

DO II = 1, N, 51

 DO I = II, min (II + 50, N)

 A(I) = A(I) + C

 ENDDO

ENDDO

INTEL OPTIMIZATION FLAGS

Lyon – 25 Feb 2014

Common flags for ifort, icc, icpc
• -O3 to do

• loop transformations first
• attention includes FP model fast=1 with „value-unsafe“ optimizations
• -fp-model fast=2 -no-prec-div -no-prec-sqrt

• -ipo
• inlining, loop counts, alignment information

• -xavx
• to use the AVX instructions on Intel CPUs (better then –mavx)

C specific flags
• -fargument-noalias

• assume function arguments not aliased
• -fansi-alias

• assume different data types not aliased
• -fno-alias

• assume pointers not aliased (dangerous!)
• –restrict

• or “restrict” keyword, –std=c99

ifort –O3 –ipo –xavx

INTEL SPECIFIC COMPILER PRAGMAS
#pragma

Description

 vector/novector
always
(un)aligned
(non)temporal
(no)vecremainder

Instructs the compiler to vectorize

override the cost model, and vectorize non-unit strides or very unaligned memory
accesses;

use of streaming stores
vectorize remainding loop

ivdep

The compiler is instructed to ignore not proven dependencies. However still performs a
dependency analysis, and will not vectorize if it finds a proven dependency that would
affect results.

simd
vectorlength(n1[, n2]...)
vectorlengthfor(data type)
(first/last)private(var1[, var2]...)
reduction(oper:var1[,var2]…)
linear(var1:step1[,var2:step2]...)
(no)vecremainder

Compiler skips dependency analysis that might cause incorrect results after
vectorization. Compilation fails if not vectorized
implies the loop unroll factor
from OMP parallel do syntax

For every iteration var is incremented by step. Every iteration of the vector
loop var is incremented by VL*step
specify different strides for different variables.

Lyon – 25 Feb 2014

REQUIREMENTS FOR VECTORIZATION

Lyon – 25 Feb 2014

• Must be a unit strided inner loop and may contain :
– mathematical operators (sqrt, sin, exp,…)
– if statements
– reduction loops
– Fortran vectorizes on the first index : array(i,j,k)
– C,C++ on the last (unit stride) : array[i] [j] [k]

• Avoid:
– Function/subroutine calls (unless inlined)
– Non-mathematical operators
– Data-dependent loop exit conditions
– Iteration count must be known at entry to loop
– Loop carried data dependencies
– Non-contiguous data (indirect addressing; non-unit stride)
– Inefficient (compiler heuristics)
– Align your data where possible
 to 32 byte boundaries (for AVX instructions)
 to 16 bytes, or at least to “natural” alignment

#pragma simd

for(int ray=0; ray < N; ray++) {

 float Color = 0.0f, Opacity = 0.0f;

 int len = 0;

 int upper = raylen[ray];

 while (len < upper) {

 int voxel = ray + len;

 len++;

 if(visible[voxel] == 0) continue;

 float O = opacity[voxel];

 if(O == 0.0) continue;

 float Shading = O + 1.0;

 Color += Shading * (1.0f -

Opacity);

 Opacity += O * (1.0f - Opacity);

 if(Opacity > THRESH) break;

 }

 color_out[ray] = Color;

}

VECTORIZATION DIRECTIVES
void my_combine(int * ioff, int nx, double * a, double * b, double * c)

{

 int i;

//#pragma ivdep

#pragma simd

 for(i=0; i<nx; i++)

 a[i]=b[i]+c[i+*ioff];

}

icc -c combine.c -vec-report=3

combine.c(4): (col. 2) remark: loop was not vectorized: existence of vector dependence.

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between c line 5 and a line 5.

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between ioff line 5 and a line 5.

combine.c(5): (col. 3) remark: vector dependence: assumed FLOW dependence between a line 5 and ioff line 5.

combine.c(5): (col. 3) remark: vector dependence: assumed FLOW dependence between a line 5 and ioff line 5.

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between ioff line 5 and a line 5.

combine.c(5): (col. 3) remark: vector dependence: assumed FLOW dependence between a line 5 and b line 5.

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between b line 5 and a line 5.

icc -c combine.c -vec-report=3 with #ivdep

combine.c(5): (col. 2) remark: loop was not vectorized: vectorization possible but seems inefficient.

icc -c combine.c -vec-report=6

combine.c(5): (col. 2) remark: vectorization support: unroll factor set to 4.

combine.c(5): (col. 2) remark: SIMD LOOP WAS VECTORIZED.

gcc -c combine.c -O3 -ftree-vectorize -ftree-vectorizer-verbose=2 -march=corei7-avx -mtune=corei7-avx

Lyon – 25 Feb 2014

INTEL SSE/AVX DATA TYPES

Lyon – 25 Feb 2014

SSE

SSE-2

4x floats

2x doubles

4x 32-bit integers

2x 64-bit integers

1x 128-bit integer

8x 16-bit shorts

16x bytes

16x floats

16x integers

8x doubles

8x 64bit integers

Xeon Phi (MIC) types

MMX™
Vector size: 64bit
Data types: 8, 16 and 32 bit ints
VL: 2,4,8
Intel® SSE
Vector size: 128bit
Data types: 8,16,32,64 bit ints
 32 and 64bit floats
VL: 2,4,8,16
Intel® AVX
Vector size: 256bit
Data types:
32 and 64 bit floats
VL: 4, 8, 16
Intel® MIC
Vector size: 512bit
Data types: 32 and 64 bit ints
 32 and 64 bit floats
(some support for 16 bits floats)
VL: 8,16

RECOGNIZE VECTOR CODE …

vmulpd ymm1, ymm0, YMMWORD PTR [rax+r14]

vaddpd ymm2, ymm1, YMMWORD PTR [rdx+r14]

vmovntpd YMMWORD PTR [rdi+r14], ymm2

#pragma omp parallel for

#pragma unroll(4)

 for(i=0;i<N;i+=1) {

 C[i]=alpha*A[i]+B[i];

 }

NO vectorisation

WITH vectorisation

[s,d]

Single
Double

AVX

{v} OP

Scalar
Packed

[s,p]

movsd xmm1, QWORD PTR [8+r9+rdi]

mulsd xmm0, xmm4

addsd xmm0, QWORD PTR [r9+rcx]

movsd QWORD PTR [r9+r8], xmm0

Compiler Report

Edit assembler

• Use : « -S –masm=intel »

• For an existing binary or object file : « objdump -M intel –D mon_binaire.x»

Lyon – 25 Feb 2014

PEAK PERFORMANCE WESTMERE TO SANDY BRIDGE

Intel® Sandy Bridge E5-2670 (Double precision):

micro architecture CPU design

2,6 109 cycles/s/uc × 2x4 FLOPS/cycle (8 cores/socket × 2 sockets) ×

ILP

TLD DLP

Intel® Westmere X5698 (Double precision):

micro architecture CPU design

3,4 109 cycles/s/uc × 2x2 FLOPS/cycle (6 cores/socket × 2 sockets) ×

ILP

TLD DLP

Lyon – 25 Feb 2014

FLOPS/SEC AND BANDWIDTH

𝑡 = 𝑡𝑀 + 𝑡𝐶 = 𝑛𝑚𝑡𝑚 + 𝑛𝑐𝑡𝑐 = 𝑛𝑐𝑡𝑐 1 +
𝑡𝑚

𝑡𝑐

1

𝑞
 avec 𝑞 =

𝑛𝑐

𝑛𝑚
 [FLOPS/bytes]

❶
Code Memory bound

❷
Code CPU bound

A
B

- CPU Frequency is « not an issue »

- Data movement is the issue

The model : “total elapsed time = T_mem + T_cpu + … “ is fine but …

T_CPU and t_mem are strongly correlated

Achieved Flops/s won’t be high enough if load / store are not fast enough

#pragma omp parallel for

#pragma unroll(4)

 for(i=0;i<N;i+=1) {

 C[i]=alpha*A[i] +B[i]* D[i];

}

Store Load Load Load

Lyon – 25 Feb 2014

ROOFLINE MODEL

Arithmetic intensity [Williams, Patterson, 2008] :
number of float-point operations to run the program divided by the number of bytes
accessed in main memory.

Dense Matrix have an arithmetic intensity that scales with problem size
Many kernels with arithmetic intensities independent of problem size.
For kernels in this former case, weak scaling can lead to different results, since it puts much
less demand on the memory system

Lyon – 25 Feb 2014

ROOFLINE MODEL

1

2

4

8

16

32

64

128

256

512

1024

2048

0,031250,06250,125 0,25 0,5 1 2 4 8 16 32 64 128

A
tt

ai
n

ab
le

 G
Fl

o
p

s/
se

c

Compute Intensity (Flops/bytes)

CPU bound
Domain

Memory bound
Domain

 Quel est le « pic » atteignable pour mon

application (disons mon kernel) ?

« ROOFLINE MODEL »
• La performance est bornée par le « pic

FLOP » théorique de la machine et le produit
de la bande passante avec q
• Memory bound domain : improve

prefetch,memory placement …
• CPU bound domain : improve vectorization

• Example 1 node E5-2697v2 :

• Ivy Bridge 12 cores, 2.7GHz
• 21.3 Gflops/s per core
• 119 GB/s with 1866MHz DRAM

Lyon – 25 Feb 2014

GETTING DATA: HARDWARE

Lyon – 25 Feb 2014

Every memory reference has to go through the
Memory Management Unit (MMU)
• virtual into physical address translation.

• translation table set up by the OS.
• Translation (page) table maps virtual page numbers
 to physical frame numbers (starting addresses).

Translation Lookaside Buffer (TLB)
• Small hardware cache
• Keeps the most recent pairs of page/frame numbers.
• Effective due to locality of reference.
• Page size can be changed by the OS from 4kB to huge page sizes.

Memory Controller (MCC)
• Receives a physical address
• Accesses the memory chips
• Bound to a certain memory technology, e.g., DDR2, DDR3, ...
• Integrated in the CPU chip or external, e.g., in the Northbridge

MISE EN OEUVRE DES HUGE PAGES

A l’aide de la libraire libhugetlbfs

• Interface via un pseudo système de fichiers

• Prérequis

• Méthode 1 : relinker votre application

• Méthode 2 : interposition (ld_preload)

• Transparent huge pages (thp)

> echo “always" >/sys/kernel/mm/redhat_transparent_hugepage/enabled

> mkdir /libhugetlbfs

> groupadd libhp

> chgrp libhp /libhugetlbfs

> chmod 770 /libhugetlbfs

> usermod moi -G libhp

> mount -t hugetlbfs hugetlbfs /libhugetlbfs

> export LD_PRELOAD=/usr/lib64/libhugetlbfs.so

> export HUGETLB_MORECORE=yes

> ./a.out

> gcc –B $HOME/local/lib/libhugetlbfs/ -Wl,--hugetlbfs-link=BDT mon_programme.c

> ./a.out

Lyon – 25 Feb 2014

CACHE USAGE

Localité temporelle ou spatiale des données

Les caches sont des éléments matériels complexes.

 Cette complexité est cachée au programmeur.

Par contre il existe des règles de bonne usage des caches

• Il faut travailler sur la réutilisation des données

• Leur localité

• Le programmeur peut lui même (à avoir) gérer la
cohérence de cache

• “Explicit cache control”

• Exemple d’instruction ou principe :

– prefetching

– “non temporal stores” ou “streaming stores”

Intel IA64 Montecito (1.6 GHz)

Intel Xeon Nehalem (3.2 GHz)

– Design parameters
– Capacity (size)
– Line size

• Banking

– Coherency
• Protocol (Ex. MESI), “snooping”

– Associativity
• Direct-mapped
• Set-associative
• Fully associative

– Block replacement policy
• LRU, LFU, FIFO, random

– Write policy
• Write-back, write-through (write buffer)

– Allocate-on-write-miss policy

– Victim buffer
– Cache unification
– Prefetching
– Non-temporal or Streaming Stores
– Fence
– Flush

Lyon – 25 Feb 2014

TASK BINDING

Nous sommes sur des sytèmes CC NUMA : accès à la mémoire depend le placement.

Le noyau dispose d’un petit nombre d’appels systèmes lui permettant de gérer le
placement/l’attachement des processus et la gestion mémoire

• #include <sched.h>

• sched_setaffinity

• sched_getaffinity

• sched_getcpu (glibc > 2.6)

• #include <numaif.h>

• mbind

• set_mempolicy

Existe des interfaces noyau de plus haut niveau CPUSET, MPIRUN, SLURM

• Un malloc (voire un calloc) alloue la mémoire au niveau virtuelle pas physique

• La page doit être “touchée” pour être physiquement allouée

6 5 7 4
socket 1

2 1 3
socket 0

0 7 6 5 4 3 2 1

Lyon – 25 Feb 2014

FIRST TOUCH POLICY

// initialisation des données

for(i=0; i<N; i++)

 for(j=0; j<M; j++) { … }

#pragma omp parallel for private(j)

for(i=0; i<N; i++)

 for(j=0; j<M; j++) { … }

6 5 7 4
socket 1

2 1 3
socket 0

0 7 6 5 4 3 2 1

La moitié des accès mémoires sont distantes !

Lyon – 25 Feb 2014

FIRST TOUCH POLICY

#pragma omp parallel for private(j)

// initialisation des données

for(i=0; i<N; i++)

 for(j=0; j<M; j++) { … }

#pragma omp parallel for private(j)

for(i=0; i<N; i++)

 for(j=0; j<M; j++) { … }

6 5 7 4
socket 1

2 1 3
socket 0

0 3 2 1 7 6 5 4

Tous les accès mémoires sont maintenant locaux !

Lyon – 25 Feb 2014

STREAM BENCHMARK

 0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

0 1 2 3 4 5 6 7 8 9

number of threads

m
em

or
y

ba
nd

w
id

th
 (M

B
/s

ec
/s

oc
ke

t)

stream

mstream

triads

per process

Memory bandwith (socket related)
in MiB/sec

threads triads
per

process

8 40 000 5 000

7 40 150 5 736

6 40 462 6 744

5 40 600 8 120

4 39 977 9 994

3 37 480 12 493

2 28 760 14 380

1 15 250 15 250

Intel ® Xeon ® “Sandy Bridge” E5-2690

Lyon – 25 Feb 2014

Basical rules for theoretical memory BW [Bytes / second] :
8 [Bytes / channel] * Mem freq [Gcycles/sec] * nb of channels * nb of sockets

FIRST TOUCH POLICY | EXEMPLE

Un exemple:

Code stream modifié

…

/* Get initial value for system clock. */

#pragma omp parallel for

 for (j=0; j<N; j++) {

 a[j] = 1.0;

 b[j] = 2.0;

 c[j] = 0.0;

 }

…

Scale Add Triad

stream 32,1 32,0 31,8

fstream 13,6 13,7 13,8

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

D
é

b
it

 (
G

B
/s

e
c)

Comment résoudre le problème:

• Corriger le code si c’est possible (sources)

• Si ce n’est pas possible, avec numactl
envisager l’interleaving

Politique d’interleaving:

• L’allocateur distribue les pages en “round-
robin” sur les différents noeuds (ceux
qu’on lui spécifie).

• On augmente la probabilité de Hits

Lyon – 25 Feb 2014

numactl --interleave=0-1 ./fstream numactl –membind=1 ./fstream

./fstream

 node0 node1

numa_hit 588005 587422

numa_miss 0 0

numa_foreign 0 0

interleave_hit 587315 587274

local_node 587898 178

other_node 107 587244

 node0 node1

numa_hit 749 1174717

numa_miss 0 0

numa_foreign 0 0

interleave_hit 0 0

local_node 749 221

other_node 0 1174496

 node0 node1

numa_hit 1175137 215

numa_miss 0 0

numa_foreign 0 0

interleave_hit 0 0

local_node 1175137 215

other_node 0 0

Copy 18515 10015 10057

Scale 23000 13574 13593

Add 25392 13749 13732

Triad 25166 13794 13797

Copy Scale Add Triad

max 100% 100% 100% 100%

interleave 76% 72% 79% 79%

membind=0 41% 42% 43% 43%

default 41% 42% 43% 43%

0%
20%
40%
60%
80%

100%
120%

FIRST TOUCH POLICY | INTERLEAVE

Lyon – 25 Feb 2014

GESTION DU CACHE IO ET EFFETS DE BORDS

6 5 7 4
socket 1

2 1 3
socket 0

0 7 6 5 4 3 2 1

1. Première Itération

Lyon – 25 Feb 2014

GESTION DU CACHE IO ET EFFETS DE BORDS

Par défaut, linux alloue la mémoire sur le noeud local et sur un noeud distant si la
mémoire locale est occupée par des entrées du cache IOs. Cette politique est ajustable
via l’entrée du noyau /proc/sys/vm/zone_reclaim_mode ou vm.zone_reclaim_mode.

6 5 7 4
socket 1

2 1 3
socket 0

0

IO cached

7 6 5 4 3 2 1

2. Phase D’IOs :
création d’un fichier de reprise par le premier processus,

puis le processus libère la mémoire

3. Seconde itération

Lyon – 25 Feb 2014

PHYSICS CODES

do k over depth/height

 do j over y grid

 do i over x grid

 access arrays with not much re-use

 no clear kernel

 CPU and memory-bandwidth bound ..

 Running a i,j,k grid 500 200 80

 Time to execute mm subroutine: 0.416193962097168 sec

 mm v1: 0.385792016983032 sec

 mm2 block: 100x50 0.470975875854492 sec

Sample Earth to run a simulation in a couple of hours.
Decomposition of the physical horizontal grid on a x-y processor grid.

Traditionally running on vector machines.
Fortran example for register pressure and blocking

Lyon – 25 Feb 2014

INTEL COMPILER REPORTS

Lyon – 25 Feb 2014

Very detailed information of all work done by the compiler
a special vectorization report, can be piped into other scripts
-vec-report<n>

-opt-report-phase=
• ipo_inl

• Interprocedural Optimization Inlining Report
• ilo

• Intermediate Language Scalar Optimization
• hpo

• High Performance Optimization
• hlo

• High-level Optimization
• pgo

• Profile Guided Optimizer
-guide

• get advice on how to help the compiler to vectorize loops

EXAMPLE : HLO OPTIMIZATION REPORTS

Lyon – 25 Feb 2014

%ifort -O3 -opt_report_phase hlo -opt-report-phase hpo matmul.f90

HPO VECTORIZER REPORT (matmul_)

…

matmul.f90(9:1-9:1):VEC:matmul_: PERMUTED LOOP WAS VECTORIZED

…

High Level Optimizer Report (matmul_)

#of Array Refs Scalar Replaced in matmul_ at line 9=36

…

<matmul.f90;9:9;hlo_linear_trans;matmul_;0>

LOOP INTERCHANGE in loops at line: 9 8 7

Loopnest permutation (1 2 3) --> (2 3 1)

…

<matmul.f90;9:9;hlo_unroll;matmul_;0>

Loop at line 9 blocked by 128

…

Loop at line 7 blocked by 128

Loop at line 8 blocked by 128

Loop at line 8 unrolled and jammed by 4

Loop at line 7 unrolled and jammed by 4

subroutine matmul(a,b,c,n)

real(8) a(n,n),b(n,n),c(n,n)

do j=1,n

 do i=1,n

 do k=1,n

 c(j,i)=c(j,i)+a(k,i)*b(j,k)

 enddo

 enddo

enddo

end

ALIGNEMENT DES DONNÉES

Lignes de cache

Peut être pénalisant.

Mieux vaut aligner les données sur la taille des vecteurs.

64 bytes 64 bytes

16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

32 32 32 32
32 32 32 32

Non-alignées

Non-alignées
Alignées

Alignées

64 bytes

Lyon – 25 Feb 2014

INTEL DATA ALIGNMENT

Lyon – 25 Feb 2014

Compiler can do best optimizations if loads /stores are aligned
• 16 Bytes boundaries for SSE, 32Byte for AVX and 64Bytes for MIC
• Could be imposed for static data
• (v)movupd (vectorload) if unaligned 2x128 stores may be
 faster than 1x256 unaligned store.

• Use special malloc libraries
• posix_memalign(void **memptr, size_t alignment, size_t size);
• Use in C void* _mm_malloc (int size, int n)

• Compiler creates an n-byte boundary aligned pointer to memory.
• C __declspec(align(n, [offset])) Fortran !dir$ attributes align:n::varname

• Compiler creates the variable aligned on an “n”-byte boundary, with an “offset” in bytes.

• C __assume_aligned(a,n) Fortran !dir$ assume_aligned varname:n

• Instructs the compiler to assume that array a is aligned on an n
• #pragma vector aligned

• Vectorize using aligned loads /stores for vector accesses

__declspec(align(32)) X[1000];

void foo(float *restrict a, …)

__assume_aligned(a,32)

__assume(n1%8=0);

__assume(n2%8=0);

for(i=0;i<n;i++) X[i] +=

a[i+n1]

}

INTEL COMPILER DATA ALIGNMENT OPTIONS

Lyon – 25 Feb 2014

Fortran Compiler options
-align <keyword>
[no]commons, [no]dcommons,[no]qcommons, [no]zcommons,
rec1byte, rec2byte, rec4byte,rec8byte, rec16byte, rec32byte,
array8byte, array16byte, array32byte,array64byte,
array128byte, array256byte

-falign-functions=[2|16]
 align the start of functions on a 2 (DEFAULT) or 16 byte
boundary

-Zp[n] specify alignment constraint for structures

In C
-[no]align
 analyze and reorder memory layout for variables and
arrays

subroutine foo(a,f2,st,rep,rstr)

real*8 :: a(*),a1

integer f2,st,rep,rstr,i

!DIR$ ASSUME_ALIGNED A: 64

!DIR$ ASSUME (mod(f2,8) .eq. 0)

!dir$ simd

do i=1,(rep-1)*rstr+1

 a1=a(i)+a(f2*st+i)

 a(f2*st+i)=a(i)-a(f2*st+i)

 a(i)=a1

enddo

end subroutine

ALIGNEMENT DES DONNÉES

#define N 1000000000

double A[N] ;

double B[N] ;

double S[N] ;

#pragma vector aligned(A,B,C)

 for(i=0;i<N;i+=1)

 {

 C[i]=0.0;

 A[i]=1.0;

 B[i]=0.1;

 }

#define N 1000000000

double A[N] __attribute__((aligned(64)));

double B[N] __attribute__((aligned(64)));

double S[N] __attribute__((aligned(64)));

#pragma vector aligned(A,B,C)

 for(i=0;i<N;i+=1)

 {

 C[i]=0.0;

 A[i]=1.0;

 B[i]=0.1;

 }

Lyon – 25 Feb 2014

ALIGNEMENT DES DONNÉES

#define N 1000000000

double A[N] __attribute__((aligned(64)));

double B[N] __attribute__((aligned(64)));

double S[N] __attribute__((aligned(64)));

#pragma omp parallel for

#pragma vector aligned(A,B,C)

 for(i=0;i<N;i+=1)

 {

 C[i]=0.0;

 A[i]=1.0;

 B[i]=0.1;

 }

> OMP_NUM_THREADS=10 ./daxpy.x 1.000001

Go!

Done!

i=1000000000 j=10

T=15972239952 cycles, 5.70 sec, avg=11.33 sum=1.1e+09

42072.07051 MB/s

3506.00588 MFLOPS/s

> OMP_NUM_THREADS=12 ./daxpy.x 1.000001

Segmentation fault

Lyon – 25 Feb 2014

INTEL TUNING EXAMPLE FINITE DIFFERENCE METHOD

2

2

2

2

2

2

2

2

2

1

z

P

y

P

x

P

t

P

v 


















Isotropic Wave Equation :

• order-k in space stencil (here k is 4 or 8)
• memory bandwidth bound code
• Written in C/C++
• Starting version using aligned arrays
• Performance Measure : Mpoints/second

Lyon – 25 Feb 2014

FINITE DIFFERENCES - STENCIL COMPUTATION

for (i over Z){

 for (j over Y){

 for (k over X){

 Lapl_xx= x*wavefield_t1[i][j][k]

 + (wavefield_t1[i][j][k-1]+ wavefield_t1[i][j][k+1])

 + (wavefield_t1[i][j][k-2]+ wavefield_t1[i][j][k+2))

 + (wavefield_t1[i][j][k-3]+ wavefield_t1[i][j][k+3])

 + (wavefield_t1[i][j][k-4]+ wavefield_t1[i][j][k+4]);

 Lapl_yy= y*wavefield_t1[i][j][k]

 + (wavefield_t1[i][j-1][k]+ wavefield_t1[i][j+1][k])

 + (wavefield_t1[i][j-2][k]+ wavefield_t1[i][j+2][k])

 + (wavefield_t1[i][j-3][k]+ wavefield_t1[i][j+3][k])

 + (wavefield_t1[i][j-4][k]+ wavefield_t1[i][j+4][k]);

No problem for vectorization, parallelization or loop changes.
3 dimensions * 8 values = 24+1 point stencil
A single stencil computation underutilizes 4*4=16 cache lines by
accessing only one floating-point value from each of these cache-
lines.

Lyon – 25 Feb 2014

FINITE DIFFERENCES - STENCIL COMPUTATION

for (i over Z){

 for (j over Y){

 for (k over X){

 Lapl_xx= x*wavefield_t1[i][j][k]

 + (wavefield_t1[i][j][k-1]+ wavefield_t1[i][j][k+1])

 + (wavefield_t1[i][j][k-2]+ wavefield_t1[i][j][k+2))

 + (wavefield_t1[i][j][k-3]+ wavefield_t1[i][j][k+3])

 + (wavefield_t1[i][j][k-4]+ wavefield_t1[i][j][k+4]);

 Lapl_yy= y*wavefield_t1[i][j][k]

 + (wavefield_t1[i][j-1][k]+ wavefield_t1[i][j+1][k])

 + (wavefield_t1[i][j-2][k]+ wavefield_t1[i][j+2][k])

 + (wavefield_t1[i][j-3][k]+ wavefield_t1[i][j+3][k])

 + (wavefield_t1[i][j-4][k]+ wavefield_t1[i][j+4][k]);

19 SSE registers being used to compute 4 stencils simultaneously.
At least four floating-point elements are loaded from each cache-
line, and twelve floating point elements belong to the cache-
line(s) holding the X-direction elements.

Lyon – 25 Feb 2014

FINITE DIFFERENCES - STENCIL COMPUTATION

for (i over Z){

 for (blocked loop j over Y){

 for (blocked loop k over X)

 for (k over X)

 Lapl_xx [k] = x*wavefield_t1[i][j][k]

 + (wavefield_t1[i][j][k-1]+ wavefield_t1[i][j][k+1])

 + (wavefield_t1[i][j][k-2]+ wavefield_t1[i][j][k+2))

 + (wavefield_t1[i][j][k-3]+ wavefield_t1[i][j][k+3])

 + (wavefield_t1[i][j][k-4]+ wavefield_t1[i][j][k+4]);

 for (k over X)

 Lapl_yy [k] = y*wavefield_t1[i][j][k]

 + (wavefield_t1[i][j-1][k]+ wavefield_t1[i][j+1][k])

 + (wavefield_t1[i][j-2][k]+ wavefield_t1[i][j+2][k])

 + (wavefield_t1[i][j-3][k]+ wavefield_t1[i][j+3][k])

 + (wavefield_t1[i][j-4][k]+ wavefield_t1[i][j+4][k]);

Optimization with:
Block on Y and on X
Use an additional “helper loop” over k called writing into small
vectors in a separate function.

Lyon – 25 Feb 2014

INTEL TUNING EXAMPLE

V01 Original version base time

./iso3dfd_dev01_cpu_avx.exe 400 300 800 20 10

throughput: 576.88 MPoints/s

V02 with loop blocking

throughput: 646.82 MPoints/s

V04 ivdep and loop unroll directive

throughput: 755.78 MPoints/s

V05 Macros FINITE_ADD, assume_aliged, manual unrolling of inner loop

throughput: 1368.46 MPoints/s

V06 Using Macros and optimizing multiplies with the coeffecients

throughput: 1397.78 MPoints/s

V07 First touch, streaming stores

throughput: 2122.33 MPoints/s

V08 Usage of vector intrinsics and optimal blocking

throughput: 2207.68 MPoints/s

Lyon – 25 Feb 2014

INTEL AND AMD SSE/AVX

Lyon – 25 Feb 2014

2007: Intel (Woodcrest) and AMD (Barcelona) SSE 128bit (data paths and FP units)
 2x speed-up of vectorized codes for DP using packed SSE instructions
 Chips suffering from peak transfer rate vs peak FP performance (L1,L2,Memory)

2011: Intel (SandyBridge) and AMD (Bulldozer) AVX 256bit
 again a possible 2x speed-up of vectorized codes …
 Impressive : with even more cores, the peak transfer rate vs peak FP performance
 has slightly improved (additional ports, faster memory).
 VEX prefix 256 SIMD support can run 3 or 4 operand syntax (compared to 2 for x86 ISA)
 AVX needs vectorization

The 2x can not be reached for real applications.
From Westmere (Nehalem) to SandyBridge not all components scale 2x (especially the L2/L3 cache bandwidth)
LMBench. Expect a 1.2-1.4x !

AMD shares FP unit for 2 cores. AMD extends FMA4 instructions (fused multiply-add).
AMD can run the threads using floating points in 256-bit AVX mode (scheduling ymm-based operations over the
entire FP unit) or can use just one lane of the shared FP unit (xmm 128-bit) with VEX or SSE code.

128 255 127 0

xmm0

CONCLUSION COMPILERS OPTIMIZATION

Lyon – 25 Feb 2014

Compiler works well
• Local Optimization on basic blocks (branchless statements)

• common sub-expression elimination, redundant load and store elimination
• scheduling, strength reduction, peephole optimizations.

• Loop Optimization
• unrolling, vectorization

• Function Inlining
• increase code size and generate less efficient code

• Global Optimization (ipo)

Compiler needs guidance
• Loop and “adjacent loops” optimization

• Peeling, blocking, fusion or fission of adjacent loops :
• Data locality and re-usage (change from memory bandwidth bound to cpu bound)

• data alignment
• Block into L3 to optimize TLB

• Global Optimization using Profile-Feedback Optimization (PFO), profile guided (PGO)

THANK YOU !
GUNTER.ROETH@BULL.NET

Lyon – 25 Feb 2014

STATISTIQUES NUMA

Disponibles via :
• /sys/devices/system/node/node*/numastat

la commande numastat

• L’unité est la page (4K)

• Tout ça mérite d’être enrobé

> numastat

 node0 node1

numa_hit 37270443889 41299449921

numa_miss 1738099296 3204337700

numa_foreign 3204337700 1738099296

interleave_hit 1347000 1243207

local_node 37266097532 41259383644

other_node 1742445653 3244403977

variable Description

numa_hit numa_hit is the number of allocations where an allocation was intended for that node and succeeded there.

numa_miss numa_miss shows how often an allocation was intended for this node, but ended up on another node due to low
memory.

numa_foreign numa_foreign is the number of allocations that were intended for another node, but ended up on this node. Each
numa_foreign event has a numa_miss on another node.

interleave_hit interleave_hit is the number of interleave policy allocations that were intended for a specific node and succeeded
there.

local_node local_node is incremented when a process running on the node allocated memory on the same node.

other_node other_node is incremented when a process running on another node allocated memory on that node.
Lyon – 25 Feb 2014

Integer
ALU & Shift

Integer
ALU & LEA

Load &
Store Addr.

Store Data
Integer

ALU & LEA

FP Mul

Vector Int
Multiply

Vector
Logicals

Branch

Divide

Vector
Shifts

FP Add

Vector Int
ALU

Vector
Logicals

Vector Shuffle

Vector Int
ALU

Vector
Logicals

P
o

rt
 0

P
o

rt
 1

P
o

rt
 4

P
o

rt
 5

SANDY BRIDGE: EXECUTION UNITS

P
o

rt
 2

P
o

rt
 3

- Up to 6 instructions per cycle:
• 3 memory instructions

(P2,3,4)
• 3 compute instructions

(P0,1,5)
• En particulier 2

instructions ADD ou
MUL en FP

Instruction Set
SP FLOPs per
cycle per core

DP FLOPs per
cycle per core

L1 Cache Bandwidth
(Bytes/cycle)

L2 Cache
Bandwidth

(Bytes/cycle)

AVX

(256-bits)
16 8 48 (32B read + 16B write) 32

Lyon – 25 Feb 2014

COMPILER TARGETS : INTEL AND AMD

Lyon – 25 Feb 2014

Intel SandyBridge L5330, dual socket 8 cores per socket
Intel MIC Xeon Phi Co-processor >50 cores on a socket
AMD Bulldozer 2 integer cores sharing a FP unit 16 cores per socket

Very different CPU architecture
all processors need vectorization to run at highest possible speed !

