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Guider le compilateur pour optimiser  
la performance de vos applications. 
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FORTRAN AND C/C++ COMPILERS 
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Freeware 
• GNU Fortran and C/C++ compilers : gfortran, gcc, g++ are popular 

gnu.org 

• Oracle Solaris Studio 
oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html 

• Open64  
• Not too good, and not very clear about license free 
open64.net 

 
Proprietary 
• Intel   

intel.com 

• NVIDIA bought Portland Group  
pgroup.com 

• Absoft, Cray, IBM, NAG, PathScale 
 



USER PROGRAM DEVELOPMENT 
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From equations to simulations  
 
• Choose a high level programming language (C,C++, Fortran) avoid scripting. 
• Design the program flow 

• Try to keep the program modular. 
• Write validation routines, not only for toy cases : 

• Seismic may check amplitudes/frequencies …  
• Avoid absolute reference results obtained through simulation 

• Write performance (timer) measurements around the kernels. 
• Use several compilers 



GNU COMPILERS OPTIMIZATIONS 

Lyon – 25 Feb 2014 

Very popular compiler and tools 
GNU GCC 4.7 March 2012             latest version : GCC 4.8 
 
• Needs the latest mtune/march/with-cpu options available designed for AVX and Intel's 

newest CPUs. 
• –mtune=corei7-avx –mavx  
• Build with --with-mfpmath=avx  to use AVX floating-point arithmetic 

• Most optimizations are only enabled if an -O level is set on the command line.  
• optimization with very conservative defaults  
• O and –O2 will not increase the code size, and work everywhere 
• gfortran/gcc auto-vectorization needs –O3 
• Profile feedback available 



GNU COMPILERS AGGRESSIVE OPTIONS 
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-ffast-math 
• Allows mathematical simplifications for computations.  
• May be needed for vectorization. 

 
-ftree-loop-distribution, -ftree-vectorize 

• Perform loop distribution : one loop is distributed into several  smaller loops. 
• allow further loop optimizations, like parallelization or vectorization, to take place. 
 

-ftree-vectorizer-verbose=2 
• vectorization report  
 

 
  

 

C may need the restrict qualifier for the pointers and  intrinsic __builtin_assume_aligned 
void test4(double * restrict a, double * restrict b)  

{  

int i;  

double *x = __builtin_assume_aligned(a, 16);  

double *y = __builtin_assume_aligned(b, 16);  

for (i = 0; i < SIZE; i++) { x[i] += y[i]; }  

}  



GNU COMPILERS LOOP OPTIMIZATIONS 
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To use this code transformation, GCC has to be configured with --with-ppl and --with-cloog to enable the Graphite 
loop transformation infrastructure.  
 
-floop-interchange  
 Perform loop interchange transformations on loops.  
-floop-strip-mine (use with loop-block-tile-size parameter for striplength) 
 Loop blocking of a single loop. Strip mining splits a loop into two nested loops. The outer loop has strides equal 
to the strip size and the inner loop has strides of the original loop within a strip.  
-floop-block 
 Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the 
memory accesses of the element loops fit inside caches.  

DO II = 1, N, 51  

 DO JJ = 1, M, 51  

  DO I = II, min (II + 50, N)  

   DO J = JJ, min (JJ + 50, M)  

      A(J, I) = B(I) + C(J)  

   ENDDO  

  ENDDO  

 ENDDO 

ENDDO  

DO II = 1, N, 51  

    DO I = II, min (II + 50, N)  

          A(I) = A(I) + C  

    ENDDO  

ENDDO 

 



INTEL OPTIMIZATION FLAGS 
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Common flags for ifort, icc, icpc  
• -O3 to do 

•  loop transformations first 
•  attention includes FP model fast=1 with  „value-unsafe“ optimizations 
• -fp-model fast=2 -no-prec-div -no-prec-sqrt  

• -ipo  
• inlining, loop counts, alignment information 

• -xavx  
• to use the AVX instructions on Intel CPUs (better then –mavx) 

C specific flags 
• -fargument-noalias  

• assume function arguments not aliased 
• -fansi-alias  

• assume different data types not aliased 
• -fno-alias  

• assume pointers not aliased (dangerous!) 
• –restrict  

• or “restrict” keyword, –std=c99 

ifort –O3 –ipo –xavx  



INTEL SPECIFIC COMPILER PRAGMAS 
#pragma 

 
Description 

 vector/novector 
always 
(un)aligned 
(non)temporal 
(no)vecremainder 

Instructs the compiler to vectorize 
 

override the cost model, and vectorize non-unit strides or very unaligned memory 
accesses;  
 

use of streaming stores 
vectorize remainding loop  

ivdep 

 

The compiler is instructed to ignore  not proven dependencies. However still performs a 
dependency analysis, and will not vectorize if it finds a proven dependency that would 
affect results.  

simd 
vectorlength(n1[, n2]...) 
vectorlengthfor(data type) 
(first/last)private(var1[, var2]...) 
reduction(oper:var1[,var2]…) 
linear(var1:step1[,var2:step2]...) 
(no)vecremainder 
 
 
 

 

Compiler skips dependency analysis that might cause incorrect results after 
vectorization. Compilation fails if not vectorized 
implies the loop unroll factor 
from OMP parallel do syntax 
 
For every iteration var is incremented by step. Every iteration of the vector 
loop var is incremented by VL*step 
specify different strides for different variables. 
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REQUIREMENTS FOR VECTORIZATION 
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• Must be a unit strided inner loop and may contain : 
– mathematical operators (sqrt, sin, exp,… ) 
– if statements  
– reduction loops 
– Fortran vectorizes on the first index : array(i,j,k) 
– C,C++ on the last (unit stride) : array[i] [j] [k] 
 
• Avoid: 
– Function/subroutine calls (unless inlined) 
– Non-mathematical operators 
– Data-dependent loop exit conditions  
– Iteration count must be known at entry to loop 
– Loop carried data dependencies 
– Non-contiguous data (indirect addressing; non-unit stride)  
– Inefficient (compiler heuristics) 
– Align your data where possible 
  to 32 byte boundaries (for AVX instructions)  
 to 16 bytes, or at least to “natural” alignment  

#pragma simd 

for(int ray=0; ray < N; ray++) { 

  float Color = 0.0f, Opacity = 0.0f; 

  int len = 0; 

  int upper = raylen[ray];    

  while (len < upper) { 

    int voxel = ray + len; 

    len++; 

    if(visible[voxel] == 0) continue; 

    float O = opacity[voxel]; 

    if(O == 0.0) continue; 

    float Shading = O + 1.0; 

    Color += Shading * (1.0f - 

Opacity); 

    Opacity += O * (1.0f - Opacity); 

    if(Opacity > THRESH) break; 

  } 

  color_out[ray] = Color; 

} 



VECTORIZATION DIRECTIVES 
void my_combine(int * ioff, int nx, double * a, double * b, double * c) 

{ 

        int i; 

//#pragma ivdep 

#pragma simd 

        for(i=0; i<nx; i++) 

                a[i]=b[i]+c[i+*ioff]; 

} 

icc -c combine.c -vec-report=3 

combine.c(4): (col. 2) remark: loop was not vectorized: existence of vector dependence. 

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between c line 5 and a line 5. 

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between ioff line 5 and a line 5. 

combine.c(5): (col. 3) remark: vector dependence: assumed FLOW dependence between a line 5 and ioff line 5. 

combine.c(5): (col. 3) remark: vector dependence: assumed FLOW dependence between a line 5 and ioff line 5. 

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between ioff line 5 and a line 5. 

combine.c(5): (col. 3) remark: vector dependence: assumed FLOW dependence between a line 5 and b line 5. 

combine.c(5): (col. 3) remark: vector dependence: assumed ANTI dependence between b line 5 and a line 5. 

icc -c combine.c -vec-report=3 with #ivdep 

combine.c(5): (col. 2) remark: loop was not vectorized: vectorization possible but seems inefficient. 

icc -c combine.c -vec-report=6 

combine.c(5): (col. 2) remark: vectorization support: unroll factor set to 4. 

combine.c(5): (col. 2) remark: SIMD LOOP WAS VECTORIZED. 

 

gcc -c combine.c -O3 -ftree-vectorize -ftree-vectorizer-verbose=2 -march=corei7-avx -mtune=corei7-avx 
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INTEL SSE/AVX DATA TYPES 
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SSE 

SSE-2 

4x floats  

2x doubles 

4x 32-bit integers  

2x 64-bit integers 

1x 128-bit integer  

8x 16-bit shorts 

16x bytes 

16x floats  

16x integers 

8x doubles 

8x 64bit integers 

Xeon Phi (MIC)  types 

MMX™ 
Vector size: 64bit 
Data types:  8, 16 and 32 bit ints 
VL: 2,4,8 
Intel® SSE  
Vector size: 128bit  
Data types:  8,16,32,64 bit ints  
                      32 and 64bit floats  
VL: 2,4,8,16  
Intel® AVX  
Vector size: 256bit  
Data types:  
32 and 64 bit floats  
VL: 4, 8, 16 
Intel® MIC 
Vector size: 512bit 
Data types: 32 and 64 bit ints 
                     32 and 64 bit floats 
(some support for 16 bits floats) 
VL: 8,16 
  



RECOGNIZE VECTOR CODE … 

vmulpd    ymm1, ymm0, YMMWORD PTR [rax+r14]    

vaddpd    ymm2, ymm1, YMMWORD PTR [rdx+r14]    

vmovntpd  YMMWORD PTR [rdi+r14], ymm2          

#pragma omp parallel for 

#pragma unroll(4) 

                for(i=0;i<N;i+=1) { 

                        C[i]=alpha*A[i]+B[i]; 

                } 

NO vectorisation 

WITH vectorisation 

[s,d] 

Single 
Double 

AVX 

{v} OP 

Scalar 
Packed 

[s,p] 

movsd     xmm1, QWORD PTR [8+r9+rdi]  

mulsd     xmm0, xmm4                  

addsd     xmm0, QWORD PTR [r9+rcx]    

movsd     QWORD PTR [r9+r8], xmm0     

Compiler Report 

Edit assembler 

• Use : « -S –masm=intel » 

• For an existing binary or object file : « objdump -M intel –D mon_binaire.x»   
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PEAK PERFORMANCE WESTMERE TO SANDY BRIDGE 

Intel® Sandy Bridge E5-2670  (Double precision): 

micro architecture CPU design 

2,6 109 cycles/s/uc × 2x4 FLOPS/cycle (  8 cores/socket × 2 sockets) × 

ILP 

TLD DLP 

Intel® Westmere X5698 (Double precision): 

micro architecture CPU design 

3,4 109 cycles/s/uc × 2x2 FLOPS/cycle (  6 cores/socket × 2 sockets) × 

ILP 

TLD DLP 
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FLOPS/SEC AND BANDWIDTH 

𝑡 = 𝑡𝑀 + 𝑡𝐶 = 𝑛𝑚𝑡𝑚 + 𝑛𝑐𝑡𝑐 = 𝑛𝑐𝑡𝑐 1 +
𝑡𝑚

𝑡𝑐

1

𝑞
 avec 𝑞 =

𝑛𝑐

𝑛𝑚
 [FLOPS/bytes] 

❶ 
Code Memory bound 

❷ 
Code CPU bound 

A 
B 

- CPU Frequency is « not an issue » 

- Data movement is the issue 

The model : “total elapsed time = T_mem + T_cpu + … “ is fine but … 

T_CPU and t_mem are strongly correlated 

 

 

 

 

 

 

Achieved Flops/s won’t be high enough if load / store are not fast enough 

 

#pragma omp parallel for 

#pragma unroll(4) 

                for(i=0;i<N;i+=1) { 

 

                        C[i]=alpha*A[i]     +B[i]*   D[i]; 

 

                 

} 

Store Load Load Load 
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ROOFLINE MODEL 

Arithmetic intensity [Williams, Patterson, 2008] : 
number of float-point operations to run the program divided by the number of bytes 
accessed in main memory.  
 
Dense Matrix have an arithmetic intensity that scales with problem size 
Many kernels with arithmetic intensities independent of problem size.  
For kernels in this former case, weak scaling can lead to different results, since it puts much 
less demand on the memory system 
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ROOFLINE MODEL 
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 Quel est le « pic » atteignable pour mon 

application (disons mon kernel) ? 
 
« ROOFLINE MODEL » 
• La performance est bornée par le « pic 

FLOP » théorique de la machine et le produit 
de la bande passante avec q 
• Memory bound domain : improve 

prefetch,memory placement …  
• CPU bound domain : improve vectorization  

 
• Example 1 node E5-2697v2 : 

• Ivy Bridge 12 cores, 2.7GHz 
• 21.3 Gflops/s per core 
• 119 GB/s with 1866MHz DRAM 
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GETTING DATA: HARDWARE 
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Every memory reference has to go through the  
Memory Management Unit (MMU) 
• virtual into physical address translation. 

• translation table set up by the OS. 
• Translation (page) table maps virtual page numbers  
        to physical frame numbers (starting addresses). 

 
Translation Lookaside Buffer (TLB) 
• Small hardware cache 
• Keeps the most recent pairs of page/frame numbers. 
• Effective due to locality of reference. 
• Page size can be changed by the OS from 4kB to huge page sizes. 
 
Memory Controller (MCC) 
• Receives a physical address 
• Accesses the memory chips 
• Bound to a certain memory technology, e.g., DDR2, DDR3, ... 
• Integrated in the CPU chip or external, e.g., in the Northbridge 



MISE EN OEUVRE DES HUGE PAGES 

A l’aide de la libraire libhugetlbfs 

• Interface via un pseudo système de fichiers 

• Prérequis  

 

 

 

 

• Méthode 1 : relinker votre application 

 

 

• Méthode 2 : interposition (ld_preload) 

 

 

 

• Transparent huge pages (thp) 

 

 

> echo “always" >/sys/kernel/mm/redhat_transparent_hugepage/enabled 

> mkdir /libhugetlbfs 

> groupadd libhp  

> chgrp libhp /libhugetlbfs 

> chmod 770 /libhugetlbfs  

> usermod moi -G libhp 

> mount -t hugetlbfs hugetlbfs /libhugetlbfs 

> export LD_PRELOAD=/usr/lib64/libhugetlbfs.so  

> export HUGETLB_MORECORE=yes  

> ./a.out 

> gcc –B $HOME/local/lib/libhugetlbfs/ -Wl,--hugetlbfs-link=BDT  mon_programme.c 

> ./a.out 
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CACHE USAGE 

Localité temporelle ou spatiale des données 

Les caches sont des éléments matériels complexes.  

 Cette complexité est cachée au programmeur. 

Par contre il existe des règles de bonne usage des caches 

• Il faut travailler sur la réutilisation des données 

• Leur localité 

• Le programmeur peut lui même (à avoir)  gérer la 
cohérence de cache 

• “Explicit cache control” 

• Exemple d’instruction ou principe : 

– prefetching 

– “non temporal stores” ou “streaming stores” 

Intel IA64 Montecito (1.6 GHz) 

Intel Xeon Nehalem (3.2 GHz) 

– Design parameters 
– Capacity (size) 
– Line size 

• Banking 

– Coherency 
• Protocol (Ex. MESI), “snooping” 

– Associativity 
• Direct-mapped 
• Set-associative 
• Fully associative 

– Block replacement policy 
• LRU, LFU, FIFO, random 

– Write policy 
• Write-back, write-through (write buffer) 

– Allocate-on-write-miss policy 
 

– Victim buffer 
– Cache unification 
– Prefetching 
– Non-temporal or Streaming Stores 
– Fence 
– Flush 
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TASK BINDING 

Nous sommes sur des sytèmes CC NUMA : accès à la mémoire depend le placement. 

 

Le noyau dispose d’un petit nombre d’appels systèmes lui permettant de gérer le 
placement/l’attachement des processus et la gestion mémoire 

 
• #include <sched.h> 

• sched_setaffinity 

• sched_getaffinity  

• sched_getcpu (glibc > 2.6) 

•  #include <numaif.h> 

• mbind 

• set_mempolicy 

 
Existe des interfaces noyau de plus haut niveau CPUSET, MPIRUN, SLURM 

• Un malloc (voire un calloc) alloue la mémoire au niveau virtuelle pas physique 

• La page doit être “touchée” pour être physiquement allouée  

6 5 7 4 
socket 1 

2 1 3 
socket 0 

0 7 6 5 4 3 2 1 
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FIRST TOUCH POLICY 

 

// initialisation des données 

for(i=0; i<N; i++) 

    for(j=0; j<M; j++) { … } 

 

#pragma omp parallel for private(j) 

for(i=0; i<N; i++) 

    for(j=0; j<M; j++) { … } 

6 5 7 4 
socket 1 

2 1 3 
socket 0 

0 7 6 5 4 3 2 1 

La moitié des accès mémoires sont distantes ! 
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FIRST TOUCH POLICY 

#pragma omp parallel for private(j) 

// initialisation des données 

for(i=0; i<N; i++) 

    for(j=0; j<M; j++) { … } 

 

#pragma omp parallel for private(j) 

for(i=0; i<N; i++) 

    for(j=0; j<M; j++) { … } 

6 5 7 4 
socket 1 

2 1 3 
socket 0 

0 3 2 1 7 6 5 4 

Tous les accès mémoires sont maintenant locaux ! 
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STREAM BENCHMARK 
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8 40 000 5 000 

7 40 150 5 736 

6 40 462 6 744 

5 40 600 8 120 

4 39 977 9 994 

3 37 480 12 493 

2 28 760 14 380 

1 15 250 15 250 

Intel ® Xeon ® “Sandy Bridge” E5-2690 
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Basical rules for theoretical memory BW [Bytes / second ] : 
8 [Bytes / channel] * Mem freq [Gcycles/sec] * nb of channels * nb of sockets 



FIRST TOUCH POLICY | EXEMPLE 

Un exemple: 

Code stream modifié 

… 

/* Get initial value for system clock. */ 

#pragma omp parallel for 

    for (j=0; j<N; j++) { 

         a[j] = 1.0; 

         b[j] = 2.0; 

         c[j] = 0.0; 

         } 

… 

Scale Add Triad

stream 32,1 32,0 31,8

fstream 13,6 13,7 13,8

0,0

5,0

10,0

15,0
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35,0

D
é

b
it

 (
G

B
/s

e
c)

 

Comment résoudre le problème: 

• Corriger le code si c’est possible (sources) 

• Si ce n’est pas possible, avec numactl 
envisager l’interleaving 
 

Politique d’interleaving: 

• L’allocateur distribue les pages en “round-
robin” sur les différents noeuds (ceux 
qu’on lui spécifie). 

• On augmente la probabilité de Hits 
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numactl --interleave=0-1 ./fstream numactl –membind=1 ./fstream 

 

./fstream 

 

 

                node0   node1 

numa_hit        588005  587422 

numa_miss       0       0 

numa_foreign    0       0 

interleave_hit  587315  587274 

local_node      587898  178 

other_node      107     587244 

 

                node0   node1 

numa_hit        749     1174717 

numa_miss       0       0 

numa_foreign    0       0 

interleave_hit  0       0 

local_node      749     221 

other_node      0       1174496 

 

                node0   node1 

numa_hit        1175137 215 

numa_miss       0       0 

numa_foreign    0       0 

interleave_hit  0       0 

local_node      1175137 215 

other_node      0       0 

Copy 18515 10015 10057 

Scale 23000 13574 13593 

Add 25392 13749 13732 

Triad 25166 13794 13797 

Copy Scale Add Triad

max 100% 100% 100% 100%

interleave 76% 72% 79% 79%

membind=0 41% 42% 43% 43%

default 41% 42% 43% 43%

0%
20%
40%
60%
80%

100%
120%

FIRST TOUCH POLICY | INTERLEAVE 
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GESTION DU CACHE IO ET EFFETS DE BORDS 

6 5 7 4 
socket 1 

2 1 3 
socket 0 

0 7 6 5 4 3 2 1 

1. Première Itération 
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GESTION DU CACHE IO ET EFFETS DE BORDS 

Par défaut, linux alloue la mémoire sur le noeud local et sur un noeud distant si la 
mémoire locale est occupée par des entrées du cache IOs. Cette politique est ajustable 
via l’entrée du noyau /proc/sys/vm/zone_reclaim_mode ou vm.zone_reclaim_mode. 

6 5 7 4 
socket 1 

2 1 3 
socket 0 

0 

IO cached 

7 6 5 4 3 2 1 

2. Phase D’IOs :  
création d’un fichier de reprise par le premier processus,  

puis le processus libère la mémoire 

3. Seconde itération 
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PHYSICS CODES 

  

 

 

do k over depth/height 

   do j over y grid 

      do i over x grid 

 

         access arrays with not much re-use 

         no clear kernel 

          

         CPU and memory-bandwidth bound ..  

 

 Running a i,j,k grid         500         200          80 

 Time to execute mm subroutine:     0.416193962097168   sec 

                 mm v1:             0.385792016983032   sec 

                 mm2 block: 100x50  0.470975875854492   sec 

Sample Earth to run a simulation in a couple of hours.  
Decomposition of the physical horizontal grid on a x-y processor grid. 
 
Traditionally running on vector machines. 
Fortran example for register pressure and blocking 
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INTEL COMPILER REPORTS 
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Very detailed information of all work done by the compiler  
a special vectorization report, can be piped into other scripts 
-vec-report<n> 
 
-opt-report-phase= 
• ipo_inl  

• Interprocedural Optimization Inlining Report 
• ilo 

•  Intermediate Language Scalar Optimization  
• hpo  

• High Performance Optimization  
• hlo 

• High-level Optimization 
• pgo  

• Profile Guided Optimizer 
-guide  

• get advice on how to help the compiler to vectorize loops 



EXAMPLE : HLO OPTIMIZATION REPORTS 
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%ifort -O3 -opt_report_phase hlo -opt-report-phase hpo matmul.f90 

HPO VECTORIZER REPORT (matmul_) 

…  

matmul.f90(9:1-9:1):VEC:matmul_: PERMUTED LOOP WAS VECTORIZED 

… 

High Level Optimizer Report (matmul_) 

#of Array Refs Scalar Replaced in matmul_ at line 9=36 

… 

<matmul.f90;9:9;hlo_linear_trans;matmul_;0> 

LOOP INTERCHANGE in loops at line: 9 8 7 

Loopnest permutation ( 1 2 3 ) --> ( 2 3 1 ) 

… 

<matmul.f90;9:9;hlo_unroll;matmul_;0> 

Loop at line 9 blocked by 128 

… 

Loop at line 7 blocked by 128 

Loop at line 8 blocked by 128 

Loop at line 8 unrolled and jammed by 4 

Loop at line 7 unrolled and jammed by 4 

subroutine matmul(a,b,c,n) 

real(8) a(n,n),b(n,n),c(n,n) 

do j=1,n 

   do i=1,n 

      do k=1,n 

         c(j,i)=c(j,i)+a(k,i)*b(j,k) 

      enddo 

   enddo 

enddo 

end 



ALIGNEMENT DES DONNÉES  

Lignes de cache 

Peut être pénalisant.  

Mieux vaut aligner les données sur la taille des vecteurs. 

 

 
64 bytes 64 bytes 

16 16 16 16 16 16 16 16 
16 16 16 16 16 16 16 16 

32 32 32 32 
32 32 32 32 

Non-alignées 

Non-alignées 
Alignées 

Alignées 

64 bytes 
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INTEL DATA ALIGNMENT 
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Compiler can do best optimizations if loads /stores are aligned 
• 16 Bytes  boundaries for SSE, 32Byte for AVX and 64Bytes for MIC 
• Could be imposed for static data 
• (v)movupd  (vectorload) if unaligned 2x128 stores may be  
       faster than 1x256 unaligned store. 
 
• Use special malloc libraries 
• posix_memalign(void **memptr, size_t alignment, size_t size); 
• Use in C void* _mm_malloc (int size, int n) 

• Compiler creates an n-byte boundary aligned pointer to memory. 
• C __declspec(align(n, [offset]))                              Fortran !dir$ attributes align:n::varname 

• Compiler creates the variable aligned on an “n”-byte boundary, with an “offset” in bytes. 
 
• C __assume_aligned(a,n)                                        Fortran  !dir$ assume_aligned varname:n 

• Instructs the compiler to assume that array a is aligned on an n 
• #pragma vector aligned 

• Vectorize using aligned loads /stores for vector accesses 
 

__declspec(align(32)) X[1000];  

void foo(float *restrict a, … ) 

__assume_aligned(a,32)  

__assume(n1%8=0);  

__assume(n2%8=0); 

for(i=0;i<n;i++) X[i] += 

a[i+n1] 

}  



INTEL COMPILER DATA ALIGNMENT OPTIONS 
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Fortran Compiler options 
-align <keyword> 
[no]commons, [no]dcommons,[no]qcommons, [no]zcommons, 
rec1byte, rec2byte, rec4byte,rec8byte, rec16byte, rec32byte, 
array8byte, array16byte, array32byte,array64byte, 
array128byte, array256byte 
 
-falign-functions=[2|16] 
          align the start of functions on a 2 (DEFAULT) or 16 byte 
boundary 
  
-Zp[n]    specify alignment constraint for structures 
 
In C 
-[no]align 
          analyze and reorder memory layout for variables and 
arrays 

subroutine foo(a,f2,st,rep,rstr) 

real*8 :: a(*),a1 

integer f2,st,rep,rstr,i 

!DIR$ ASSUME_ALIGNED A: 64 

!DIR$ ASSUME (mod(f2,8) .eq. 0) 

!dir$ simd 

do i=1,(rep-1)*rstr+1 

  a1=a(i)+a(f2*st+i) 

  a(f2*st+i)=a(i)-a(f2*st+i) 

  a(i)=a1 

enddo 

end subroutine 



ALIGNEMENT DES DONNÉES 

#define N 1000000000 

double A[N] ; 

double B[N] ; 

double S[N] ; 

 

#pragma vector aligned(A,B,C) 

        for(i=0;i<N;i+=1) 

        { 

                C[i]=0.0; 

                A[i]=1.0; 

                B[i]=0.1; 

        } 

#define N 1000000000 

double A[N] __attribute__((aligned(64))); 

double B[N] __attribute__((aligned(64))); 

double S[N] __attribute__((aligned(64))); 

 

#pragma vector aligned(A,B,C) 

        for(i=0;i<N;i+=1) 

        { 

                C[i]=0.0; 

                A[i]=1.0; 

                B[i]=0.1; 

        } 
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ALIGNEMENT DES DONNÉES  

#define N 1000000000 

double A[N] __attribute__((aligned(64))); 

double B[N] __attribute__((aligned(64))); 

double S[N] __attribute__((aligned(64))); 

 

#pragma omp parallel for 

#pragma vector aligned(A,B,C) 

        for(i=0;i<N;i+=1) 

        { 

                C[i]=0.0; 

                A[i]=1.0; 

                B[i]=0.1; 

        } 

> OMP_NUM_THREADS=10 ./daxpy.x 1.000001 

Go! 

Done! 

i=1000000000 j=10 

T=15972239952 cycles, 5.70 sec, avg=11.33 sum=1.1e+09 

42072.07051 MB/s 

3506.00588 MFLOPS/s 

 

> OMP_NUM_THREADS=12 ./daxpy.x 1.000001 

Segmentation fault 
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INTEL TUNING EXAMPLE FINITE DIFFERENCE METHOD 
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Isotropic Wave Equation : 

• order-k in space stencil (here k is 4 or 8) 
• memory bandwidth bound code 
• Written in C/C++ 
• Starting version using aligned arrays 
• Performance Measure : Mpoints/second 
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FINITE DIFFERENCES - STENCIL COMPUTATION 

  

 

 

for (i over Z){ 

 for (j over Y){ 

   for (k over X){ 

   Lapl_xx= x*wavefield_t1[i][j][k] 

         + (wavefield_t1[i][j][k-1]+ wavefield_t1[i][j][k+1]) 

         + (wavefield_t1[i][j][k-2]+ wavefield_t1[i][j][k+2)) 

         + (wavefield_t1[i][j][k-3]+ wavefield_t1[i][j][k+3]) 

         + (wavefield_t1[i][j][k-4]+ wavefield_t1[i][j][k+4]); 

    

   Lapl_yy= y*wavefield_t1[i][j][k] 

         + (wavefield_t1[i][j-1][k]+ wavefield_t1[i][j+1][k]) 

         + (wavefield_t1[i][j-2][k]+ wavefield_t1[i][j+2][k]) 

         + (wavefield_t1[i][j-3][k]+ wavefield_t1[i][j+3][k]) 

         + (wavefield_t1[i][j-4][k]+ wavefield_t1[i][j+4][k]); 

No problem for vectorization, parallelization or loop changes.  
3 dimensions * 8 values = 24+1 point stencil 
A single stencil computation underutilizes 4*4=16 cache lines by 
accessing only one floating-point value from each of these cache-
lines.  
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FINITE DIFFERENCES - STENCIL COMPUTATION 

  

 

 

for (i over Z){ 

 for (j over Y){ 

   for (k over X){ 

   Lapl_xx= x*wavefield_t1[i][j][k] 

         + (wavefield_t1[i][j][k-1]+ wavefield_t1[i][j][k+1]) 

         + (wavefield_t1[i][j][k-2]+ wavefield_t1[i][j][k+2)) 

         + (wavefield_t1[i][j][k-3]+ wavefield_t1[i][j][k+3]) 

         + (wavefield_t1[i][j][k-4]+ wavefield_t1[i][j][k+4]); 

    

   Lapl_yy= y*wavefield_t1[i][j][k] 

         + (wavefield_t1[i][j-1][k]+ wavefield_t1[i][j+1][k]) 

         + (wavefield_t1[i][j-2][k]+ wavefield_t1[i][j+2][k]) 

         + (wavefield_t1[i][j-3][k]+ wavefield_t1[i][j+3][k]) 

         + (wavefield_t1[i][j-4][k]+ wavefield_t1[i][j+4][k]); 

19 SSE registers being used to compute 4 stencils simultaneously. 
At least four floating-point elements are loaded from each cache-
line, and twelve floating point elements belong to the cache-
line(s) holding the X-direction elements. 
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FINITE DIFFERENCES - STENCIL COMPUTATION 

  

 

 

for (i over Z){ 

 for (blocked loop j over Y){ 

   for (blocked loop k over X) 

 

   for (k over X) 

   Lapl_xx [k] = x*wavefield_t1[i][j][k] 

         + (wavefield_t1[i][j][k-1]+ wavefield_t1[i][j][k+1]) 

         + (wavefield_t1[i][j][k-2]+ wavefield_t1[i][j][k+2)) 

         + (wavefield_t1[i][j][k-3]+ wavefield_t1[i][j][k+3]) 

         + (wavefield_t1[i][j][k-4]+ wavefield_t1[i][j][k+4]); 

   for (k over X) 

   Lapl_yy [k] = y*wavefield_t1[i][j][k] 

         + (wavefield_t1[i][j-1][k]+ wavefield_t1[i][j+1][k]) 

         + (wavefield_t1[i][j-2][k]+ wavefield_t1[i][j+2][k]) 

         + (wavefield_t1[i][j-3][k]+ wavefield_t1[i][j+3][k]) 

         + (wavefield_t1[i][j-4][k]+ wavefield_t1[i][j+4][k]); 

Optimization with: 
Block on Y and on X 
Use an additional “helper loop” over k called writing into small 
vectors in a separate function. 
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INTEL TUNING EXAMPLE 

  

 

 

V01 Original version base time 

./iso3dfd_dev01_cpu_avx.exe 400 300 800 20 10 

throughput:   576.88 MPoints/s 

 

V02 with loop blocking 

throughput:   646.82 MPoints/s 

 

V04 ivdep and loop unroll directive 

throughput:   755.78 MPoints/s 

 

V05 Macros FINITE_ADD, assume_aliged, manual unrolling of inner loop 

throughput:  1368.46 MPoints/s 

 

V06 Using Macros and optimizing multiplies with the coeffecients 

throughput:  1397.78 MPoints/s 

 

V07 First touch, streaming stores 

throughput:  2122.33 MPoints/s 

 

V08 Usage of vector intrinsics and optimal blocking  

throughput:  2207.68 MPoints/s 
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INTEL AND AMD SSE/AVX 
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2007: Intel (Woodcrest) and AMD (Barcelona) SSE 128bit (data paths and FP units) 
           2x speed-up of vectorized codes for DP using packed SSE instructions 
            Chips suffering from peak transfer rate vs peak FP performance (L1,L2,Memory) 
 
2011: Intel (SandyBridge) and AMD (Bulldozer) AVX  256bit 
           again a possible 2x speed-up of vectorized codes …   
           Impressive : with even more cores, the peak transfer rate vs peak FP performance  
           has slightly improved  (additional ports, faster memory). 
           VEX prefix 256 SIMD support can run 3 or 4 operand syntax (compared to 2 for x86 ISA) 
           AVX needs vectorization  
            
The 2x can not be reached for real applications.  
From Westmere (Nehalem) to SandyBridge not all components scale 2x (especially the L2/L3 cache bandwidth) 
LMBench. Expect a 1.2-1.4x ! 
 
AMD shares FP unit for 2 cores. AMD extends FMA4 instructions (fused multiply-add).  
AMD can run the threads using floating points in 256-bit AVX mode (scheduling ymm-based operations over the 
entire FP unit) or can use just one lane of the shared FP unit (xmm 128-bit) with VEX or SSE code. 
 

128 255 127 0 

xmm0 



CONCLUSION COMPILERS OPTIMIZATION 

Lyon – 25 Feb 2014 

Compiler works well  
• Local Optimization on basic blocks (branchless statements) 

• common sub-expression elimination, redundant load and store elimination 
• scheduling, strength reduction, peephole optimizations. 

• Loop Optimization 
• unrolling, vectorization 

• Function Inlining 
• increase code size and generate less efficient code 

• Global Optimization (ipo) 
 
Compiler needs guidance 
• Loop and “adjacent loops” optimization 

• Peeling, blocking, fusion or fission of adjacent loops : 
• Data locality and  re-usage (change from memory bandwidth bound to cpu bound) 

• data alignment 
• Block into L3 to optimize TLB  

• Global Optimization using Profile-Feedback Optimization (PFO), profile guided (PGO)  



THANK YOU ! 
GUNTER.ROETH@BULL.NET 
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STATISTIQUES NUMA 

Disponibles via : 
• /sys/devices/system/node/node*/numastat 

la commande numastat 

• L’unité est la page (4K) 

• Tout ça mérite d’être enrobé 

> numastat 

                           node0           node1 

numa_hit             37270443889     41299449921 

numa_miss             1738099296      3204337700 

numa_foreign          3204337700      1738099296 

interleave_hit           1347000         1243207 

local_node           37266097532     41259383644 

other_node            1742445653      3244403977 

 
variable Description 

numa_hit numa_hit is the number of allocations where an allocation was intended for that node and succeeded there. 

numa_miss numa_miss shows how often an allocation was intended for this node, but ended up on another node due to low 
memory. 

numa_foreign numa_foreign is the number of allocations that were intended for another node, but ended up  on  this  node.   Each 
numa_foreign event has a numa_miss on another node. 

interleave_hit interleave_hit  is the number of interleave policy allocations that were intended for a specific node and succeeded 
there. 

local_node local_node is incremented when a process running on the node allocated memory on the same node. 

other_node other_node is incremented when a process running on another node allocated memory on that node. 
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SANDY BRIDGE: EXECUTION UNITS 
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- Up to 6 instructions per cycle: 
• 3  memory instructions  

(P2,3,4) 
• 3 compute instructions 

(P0,1,5) 
• En particulier 2 

instructions ADD ou 
MUL en FP 

Instruction Set 
SP FLOPs per 
cycle per core 

DP FLOPs per 
cycle per core 

L1 Cache Bandwidth 
(Bytes/cycle) 

L2 Cache 
Bandwidth 

(Bytes/cycle) 

AVX  

(256-bits) 
16 8 48 (32B read + 16B write) 32 
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COMPILER TARGETS : INTEL AND AMD  
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Intel  SandyBridge L5330, dual socket 8 cores per socket 
Intel MIC Xeon Phi Co-processor >50 cores on a socket 
AMD Bulldozer 2 integer cores sharing a FP unit 16 cores per socket 
 
Very different CPU architecture  
all processors need vectorization to run at highest possible speed ! 
 


