Bult

APPLICATIONS &
PERFORMANCE TEAM
Architect of an Open World”

Guider le compilateur pour optimiser

la performance de vos applications. /

Gunter Roeth

Applications Engineer

Lyon — 25 Feb 2014 Applications & Performance Team

Extreme Computing Business Unit

PLAN

© 0o NSO AN

COMPILATEURS POUR LE CALCUL HAUTE PERFORMANCE
OPTIONS DE COMPILATION GNU/INTEL

AVX INSTRUCTION SET (VECTORISATION)

BANDE PASSANTE MEMOIRE

MODELE ROOFLINE

FIRST TOUCH POLICY

ALIGNEMENT

EXEMPLES: BOUCLE TYPIQUE ET DIFFERENCES FINIS
CONCLUSIONS

Lyon — 25 Feb 2014

Architect of an Open Waorld”

FORTRAN AND C/C++ COMPILERS V4

Freeware
* GNU Fortran and C/C++ compilers : gfortran, gcc, g++ are popular
gnu.org

* Oracle Solaris Studio
oracle.com/technetwork/server-storage/solarisstudio/downloads/index.html/

* Openb4d
* Not too good, and not very clear about license free
opené4.net
Proprietary
* Intel
intel.com
* NVIDIA bought Portland Group
pgroup.com

* Absoft, Cray, IBM, NAG, PathScale

Lyon — 25 Feb 2014 Architect of an Open World

USER PROGRAM DEVELOPMENT V4

From equations to simulations

* Choose a high level programming language (C,C++, Fortran) avoid scripting.
* Design the program flow
* Try to keep the program modular.
* Write validation routines, not only for toy cases :
* Seismic may check amplitudes/frequencies ...
* Avoid absolute reference results obtained through simulation
* Write performance (timer) measurements around the kernels.
* Use several compilers

Lyon — 25 Feb 2014 Architect of an Open World

GNU COMPILERS OPTIMIZATIONS V4

Very popular compiler and tools
GNU GCC 4.7 March 2012 latest version : GCC 4.8

* Needs the latest mtune/march/with-cpu options available designed for AVX and Intel's
newest CPUs.

e —mtune=corei7-avx —mavx
e Build with --with-mfpmath=avx to use AVX floating-point arithmetic
* Most optimizations are only enabled if an -O level is set on the command line.
e optimization with very conservative defaults
0O and-02 will not increase the code size, and work everywhere
» gfortran/gcc auto-vectorization needs —03
* Profile feedback available

Lyon — 25 Feb 2014 Architect of an Dpen World

GNU COMPILERS AGGRESSIVE OPTIONS V4

-ffast-math

* Allows mathematical simplifications for computations.
* May be needed for vectorization.

-ftree-loop-distribution, -ftree-vectorize
* Perform loop distribution : one loop is distributed into several smaller loops.
* allow further loop optimizations, like parallelization or vectorization, to take place.

-ftree-vectorizer-verbose=2
* vectorization report

C may need the restrict qualifier for the pointers and intrinsic __builtin_assume_aligned
void testd (double * restrict a, double * restrict b)

{

int i;
double *x = builtin assume aligned(a, 16);
double *y = builtin assume aligned(b, 16);

for (i = 0; i < SIZE; i++) { x[i] += y[i]; }
}

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World"

GNU COMPILERS LOOP OPTIMIZATIONS V4

To use this code transformation, GCC has to be configured with --with-ppl and --with-cloog to enable the Graphite
loop transformation infrastructure.

-floop-interchange

Perform loop interchange transformations on loops.
-floop-strip-mine (use with loop-block-tile-size parameter for striplength)

Loop blocking of a single loop. Strip mining splits a loop into two nested loops. The outer loop has strides equal
to the strip size and the inner loop has strides of the original loop within a strip.
-floop-block

Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the
memory accesses of the element loops fit inside caches.

DO IT = 1, N, 51 DO IT = 1, N, 51
DO JJ = 1, M, 51 DO I = II, min (II + 50, N)
DO I = II, min (II + 50, N) A(I) = A(I) + C
DO J = JJ, min (JJ + 50, M) ENDDO
A(J, I) = B(I) + C(J) ENDDO
ENDDO
ENDDO
ENDDO
ENDDO

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World

INTEL OPTIMIZATION FLAGS V4

Common flags for ifort, icc, icpc

e -O3todo
* loop transformations first
* attention includes FP model fast=1 with ,value-unsafe” optimizations
* -fp-model fast=2 -no-prec-div -no-prec-sqrt

* -ipo
* inlining, loop counts, alignment information

* TXavx ifort —O3 —ipo —xavx
* to use the AVXinstructions on Intel CPUs (better then —mavx)

C specific flags

e -fargument-noalias
* assume function arguments not aliased
e -fansi-alias
* assume different data types not aliased
e -fno-alias
* assume pointers not aliased (dangerous!)
e —restrict
* or “restrict” keyword, —std=c99 Lyon — 25 Feb 2014

Bulk

Architect of an Open Waorld

INTEL SPECIFIC COMPILER PRAGMAS

vector/novector
always
(un)aligned
(non)temporal
(no)vecremainder

Description

Instructs the compiler to vectorize

override the cost model, and vectorize non-unit strides or very unaligned memory
accesses;

use of streaming stores
vectorize remainding loop
The compiler is instructed to ignore not proven dependencies. However still performs a

ivde
P dependency analysis, and will not vectorize if it finds a proven dependency that would
affect results.
simd Compiler skips dependency analysis that might cause incorrect results after
vectorlength(ni], n2]...) vectorization. Compilation fails if not vectorized
vectorlengthfor(data type) implies the loop unroll factor

(first/last)private(varl|, var2]...)
reduction(oper:varl[,var2]...)

from OMP parallel do syntax

For every iteration var is incremented by step. Every iteration of the vector

(no)vecremainder

-
specify difoerent strigﬁs for different variables. BU“—'

yon — 25 Feb

Architect of an Open World

REQUIREMENTS FOR VECTORIZATION S

e Must be a unit strided inner loop and may contain :
— mathematical operators (sqrt, sin, exp,...)

— if statements

—reduction loops

— Fortran vectorizes on the first index : array(i,j,k)

— C,C++ on the last (unit stride) : array([i] [j] [k]

e Avoid:
— Function/subroutine calls (unless inlined)
— Non-mathematical operators
— Data-dependent loop exit conditions
— Iteration count must be known at entry to loop
— Loop carried data dependencies
— Non-contiguous data (indirect addressing; non-unit stride)
— Inefficient (compiler heuristics)
— Align your data where possible
to 32 byte boundaries (for AVX instructions) .
to 16 bytes, or at least to “natural” alignment c; 2014 BU%

VECTORIZATION DIRECTIVES

void my combine (int * ioff, int nx, double * a, double * b, double * c)

{
int i;
//#pragma ivdep
#pragma simd
for (i=0; i<nx; 1i++)
al[i]=b[i]+c[i+*i0ff];

icc -c combine.c -vec-report=3

combine.c(4): (col. 2)

combine.c(5): (col. 3) remark: vector
combine.c(5): (col. 3) remark: vector
combine.c(5): (col. 3) remark: vector
combine.c(5): (col. 3) remark: vector
combine.c(5): (col. 3) remark: vector
combine.c(5): (col. 3) remark: vector
combine.c(5): (col. 3) remark: vector

remark: loop was not vectorized:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:
dependence:

assumed ANTI
assumed ANTI
assumed FLOW
assumed FLOW
assumed ANTI
assumed FLOW
assumed ANTI

existence of vector dependence.

dependence between ¢ line 5 and a line 5.
dependence between ioff line 5 and a line
dependence between a line 5 and ioff line
dependence between a line 5 and ioff line
dependence between ioff line 5 and a line
dependence between a line 5 and b line 5.
dependence between b line 5 and a line 5.

(SN C RN C RN C]

icc -c combine.c -vec-report=3 with #ivdep
combine.c(5): (col. 2) remark: loop was not vectorized: vectorization possible but seems inefficient.

icc -c combine.c -vec-report=6

combine.c(5): (col. 2) remark: vectorization support:

combine.c(5): (col. 2) remark: SIMD LOOP WAS VECTORIZED.

unroll factor set to 4.

gcc -c combine.c -03 -ftree-vectorize -ftree-vectorizer-verbose=2 -march=corei7-avx -mtune=corei7-avx

Lyon — 25 Feb 2014

Bulk

Architect of an Open World”

INTEL SSE/AVX DATA TYPES

d

SSE and AVX-128 types

AVX-256 types

N W W W
| i]
EEEREEREEREEREER
EEEEEEEE
(W W W W
[
e

4x floats

2x doubles

16x bytes

8x 16-bit shorts
4x 32-bit integers
2x 64-bit integers

1x 128-bit integer

[W W W W W W W e

1

1 1

Xeon Phi (MIC) types

|

j 4x double

16x floats

16x integers

8x doubles

8x 64bit integers

Lyon — 25 Feb 2014

SSE

SSE-2

MMX™

Vector size: 64bit

Data types: 8, 16 and 32 bit ints

VL:2,4,8

Intel® SSE

Vector size: 128bit

Data types: 8,16,32,64 bit ints
32 and 64bit floats

VL: 2,4,8,16

Intel® AVX

Vector size: 256bit

Data types:

32 and 64 bit floats

VL: 4, 8, 16

Intel® MIC

Vector size: 512bit

Data types: 32 and 64 bit ints
32 and 64 bit floats

(some support for 16 bits floats)

VL: 8,16

RECOGNIZE VECTOR CODE ...

Compiler Report

Edit assembler

- N\

? [J

Use:

« -S—masm=intel »

® For an existing binary or object file : « objdump -M intel =D mon_binaire.x»

Scalar
#pragma omp parallel for Packed
#pragma unroll (4)
for (i=0;i<N;i+=1) {
Cli]=alpha*A[i]+B[i]; {X}OP [S p] [S d]
} A
movsd xmml, QWORD PTR [8+r9+rdi] Slngle
. . mulsd xmm0, xmm4 Double
NO Vect0r|sat|0n addsd xmmO, QWORD PTR [r9+rcx]
movsd QWORD PTR [r9+4+r8], xmmO
. . vmulpd ymml, ymmO, YMMWORD PTR [rax+rl4d] -
WITH vectorisation | vadded ymm2, ymml, YMMWORD PTR [rdx+r14] BU&
vmovntpd YMMWORD PTR d1+r2‘154';eb 2&[}{112

Architect of an Open Waorld”

PEAK PERFORMANCE WESTMERE TO SANDY BRIDGE -

Intel® Westmere X5698 (Double precision):

CPU design s od micro architecture
Sl \ .

= 3,4 10° cycles/s/uc x
=W 166 GFLOPS/sec

Intel® Sandy Bridge E5-2670 (Double precision):

CPU design /\A/ micro architecture

[A A= | A \

2,6 1/09 cycles/s/uc X—Le4/_
332 GFLOPS/sec Esanl) I

Lyon — 25 Feb 2014

FLOPS/SEC AND BANDWIDTH V%

- CPU Frequency is « not an issue »
- Data movement is the issue
The model : “total elapsed time =T _mem + T _cpu + ... “is fine but ...

T_CPU and t_mem are strongly correlated

#pragma omp parallel for
#pragma unroll (4)
for (1i=0;i<N;i+=1) {

Clil=alpha*A[i] +B[1]* D[i];

m | Load (™ Load '™ Load |

Achieved Flops/s won’t be high enough if load / store are not fast enough

_ _ - tm 1 _ e
t =ty +tc =n,t, +nt, =n.t, (1 + .. q) avec ¢ -~ [FLOPS/bytes] LIk

Lyon — 25 Feb 2014 Architect of an Dpen World"

ROOFLINE MODEL

O(log(MN))
~ —~ ~ O(N)

e
— T

etic Iintensity

SpMYV, BLAS1,2 FFTs
Stencils (PDEs)
PIC codes
Lattice Methods

Dense Linear Algebra

(BLAS3)
NMaive Particle Methods

Arithmetic intensity [Williams, Patterson, 2008] :

number of float-point operations to run the program divided by the number of bytes
accessed in main memory.

Dense Matrix have an arithmetic intensity that scales with problem size
Many kernels with arithmetic intensities independent of problem size.

For kernels in this former case, weak scaling can lead to different results, since it puts much
less demand on the memory system

Lyon — 25 Feb 2014

ROOFLINE MODEL @%

Quel est le « pic » atteignable pour mon
application (disons mon kernel) ?

« ROOFLINE MODEL »

* Laperformance est bornée par le « pic
FLOP » théorique de la machine et le produit
de la bande passante avec q

+ Memory bound domain : improve
prefetch,memory placement ...

« CPU bound domain : improve vectorization

®* Example 1 node E5-2697v2 :
+ vy Bridge 12 cores, 2.7GHz
« 21.3 Gflops/s per core
« 119 GB/s with 1866MHz DRAM

Attainable GFlops/sec

—_MWWW—J CPU bound
pomain——f—pomain

1 I T T T T 1
0,03126,06250,125 0,25 0,5 1 2 4 8 16 32 64 128
Compute Intensity (Flops/bytes)

Lyon — 25 Feb 2014 Architect of an Dpen World"

GETTING DATA: HARDWARE L

Every memory reference has to go through the
Memory Management Unit (MMU)
e virtual into physical address translation.

e translation table set up by the OS. Memory

* Translation (page) table maps virtual page numbers
to physical frame numbers (starting addresses).

&

Cache

| 28 |
6B
CPU E S
Translation Lookaside Buffer (TLB) M 5)
» MMU > =S
* Small hardware cache
* Keeps the most recent pairs of page/frame numbers. 1 &
» Effective due to locality of reference.
. . TLB
* Page size can be changed by the OS from 4kB to huge page sizes.

Memory Controller (MCC)

* Receives a physical address

e Accesses the memory chips

* Bound to a certain memory technology, e.g., DDR2, DDR3, ...

* Integrated in the CPU chip or external, e.g., in the Northbridge

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World

MISE EN OEUVRE DES HUGE PAGES

A l'aide de la libraire libhugetlbfs

Interface via un pseudo systeme de fichiers

4 N\

mkdir /libhugetlbfs

groupadd libhp

chgrp libhp /libhugetlbfs

chmod 770 /libhugetlbfs

usermod moi -G libhp

mount -t hugetlbfs hugetlbfs /libhugetlbfs

Prérequis

V V. V V V V

Méthode 1 : relinker votre application

> gcc -B SHOME/local/lib/libhugetlbfs/ -Wl,--hugetlbfs-1ink=BDT mon programme.c
> ./a.out

Méthode 2 : interposition (Id_preload)

> export LD PRELOAD=/usr/lib64/libhugetlbfs.so
> export HUGETLB MORECORE=yes
> ./a.out

Transparent huge pages (thp)

> echo “always" >/sys/kernel/mm/redhat transparent hugepage/enabled

Lyon — 25 Feb 2014

‘Bulk

Architect of an Open Waorld”

CACHE USAGE V%

Localité temporelle ou spatiale des données

Les caches sont des éléments matériels complexes.

B
e
=
=
g

Cette complexité est cachée au programmeur.
Par contre il existe des regles de bonne usage des caches
® |l faut travailler sur la réutilisation des données
® Leur localité

® Le programmeur peut lui méme (a avoir) gérer la
cohérence de cache

® “Explicit cache control”
® Exemple d’instruction ou principe :

— prefetching

— “non temporal stores” ou “streaming stores”

= =

Inteleon Nealem (3.2 GHDB
wik

Lyon — 25 Feb 2014 Architect of an Dpen World™

TASK BINDING o

Nous sommes sur des sytemes CC NUMA : acces a la mémoire depend le placement.

Le noyau dispose d’un petit nombre d’appels systemes lui permettant de gérer le
placement/I'attachement des processus et la gestion mémoire

* $#include <sched.h> S- —-

+ sched setaffinity
E ii 1] 1]

+ sched getaffinity S
+ sched getcpu (glibc > 2.6) | h " |
o #include <numaif.h>

Existe des interfaces noyau de plus haut niveau CPUSET, MPIRUN, SLURM

®* Un malloc (voire un calloc) alloue la mémoire au niveau virtuelle pas physique
La page doit étre “touchée” pour étre physiguement allouée

- mbind
+ set mempolicy

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World"

FIRST TOUCH POLICY

// initialisation des données
for (1i=0; i<N; 1i++)
for (j=0; j<M; Jj++) { .. }

#pragma omp parallel for private (J)
for (i=0; 1i<N; i++)
for (j=0; j<M; Jj++) { ..}

Lyon — 25 Feb 2014

Bulk

Architect of an Open Waorld”

FIRST TOUCH POLICY V%

N
#pragma omp parallel for private(j)
// initialisation des données
for (i=0; 1i<N; i++)

for (j=0; j<M; Jj++) { .. }
fpragma omp parallel for private (j)
for (i=0; 1i<N; i++)

for (3J=0; j<M; Jj++) { .. }

J

-]?;-

socket 0

% []
Bult

Lyon — 25 Feb 2014 Architect of an Dpen World™

STREAM BENCHMARK

Basical rules for theoretical memory BW [Bytes / second] :
8 [Bytes / channel] * Mem freq [Gcycles/sec] * nb of channels * nb of sockets

Memory bandwith (socket related) 45000
in MiB/sec — 40 000 /Z—'\-—n*"
S
threads triads per S 35000 —
process @ / /
8 40 000 5000 & 30000 / /
= -—— Stream
7 40 150 5736 = 25 000 —=— mstream
5 / / triads
6 40 462 6 744 _% 20 000 J —>¢— per process
5 40 600 8120 8 15000 —
>
4 39 977 9 994 S 10000 / \\
3 37 480 12 493 2 ¢ o000
2 28 760 14 380 o
1 15 250 15 250 0 1 2 3 4 5 6 7 8 9

number of threads

Intel ® Xeon ® “Sandy Bridge” E5-2690
]
Bulk

Architect of an Open World

Lyon — 25 Feb 2014

FIRST TOUCH POLICY | EXEMPLE

v

Un exemple:
Code stream modifié

Comment résoudre le probleme:

Corriger le code si c’est possible (sources)

Si ce n’est pas possible, avec numactl
envisager l'interleaving

Politique d’interleaving:

L'allocateur distribue les pages en “round-
robin” sur les différents noeuds (ceux
qgu’on lui spécifie).

On augmente la probabilité de Hits

Ve

for

aljl] = 1.0;
b[j] = 2.0;
c[j] = 0.0;

}

/* Get initial value for system clock. */

e e e

(3=0; J<N; J++)

{

35,0
30,0
25,0
20,0
15,0
10,0

5,0

0,0

Débit (GB/sec)

Scale

Add

Triad

M stream

32,1

32,0

31,8

B fstream

13,6

13,7

13,8

Lyon — 25 Feb 2014

Bulk

Architect of an Open Waorld”

FIRST TOUCH POLICY | INTERLEAVE

v

- numactl --interleave=0-1 ./fstream

Copy

Scale
Add
Triad

numa_hit
numa_miss
numa_foreign
interleave hit
local node
other node

node0
588005
0

0
587315
587898
107

18515
23000
25392
25166

numactl -membind=1 ./fstream

nodel node0 nodel
587422 numa_hit 749 1174717 numa_hit
0 numa_miss 0 0 numa_miss
0 numa_foreign 0 0 numa_foreign
587274 interleave_hit 0 0 interleave_hit
178 local node 749 221 local node
587244 other node 0 1174496 other node
10015
13574
13749
13794
120%
100%
80%
60%
40%
20%
0% .
Copy Scale Add Triad
B max 100% 100% 100% 100%
N interleave 76% 72% 79% 79%
M membind=0 41% 42% 43% 43%
m default 41% 42% 43% 43%

Lyon — 25 Feb 2014

node0 nodel
1175137 215

0 0

0 0

0 0
1175137 215

0 0

10057
13593
13732
13797

Bulk

Architect of an Open Waorld”

GESTION DU CACHE IO ET EFFETS DE BORDS S

1. Premiere Itération

[]
Bulk

Lyon — 25 Feb 2014

GESTION DU CACHE IO ET EFFETS DE BORDS V%

2. Phase D’1Os :
création d’un fidhiSeeaBEIRd tRaFadigBmier processus,
uis le processus libere la mémoire

] T

Par défaut, linux alloue la mémoire sur le noeud local et sur un noeud distant si la
meémoire locale est occupée par des entrées du cache 10s. Cette politique est ajustable

via I'entrée du noyau /proc/sys/vm/zone reclaim mode OU vm.zone reclaim mode.

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World"

PHYSICS CODES

Sample Earth to run a simulation in a couple of hours.
Decomposition of the physical horizontal grid on a x-y processor grid.

Traditionally running on vector machines.
Fortran example for register pressure and blocking

Bulk

Architect of an Open Waorld”

Lyon — 25 Feb 2014

INTEL COMPILER REPORTS

Very detailed information of all work done by the compiler
a special vectorization report, can be piped into other scripts
-vec-report<n>

-opt-report-phase=
e ipo_inl

* Interprocedural Optimization Inlining Report
* lo

* Intermediate Language Scalar Optimization
* hpo

* High Performance Optimization

* hlo

* High-level Optimization
* pgo

* Profile Guided Optimizer
-guide

 get advice on how to help the compiler to vectorize loops

Lyon — 25 Feb 2014

EXAMPLE : HLO OPTIMIZATION REPORTS

%ifort -03 -opt_report phase hlo -opt-report-phase hpo matmul.£f90

HPO VECTORIZER REPORT (matmul_)
matmul.£90(9:1-9:1) :VEC:matmul : PERMUTED LOOP WAS VECTORIZED

High Level Optimizer Report (matmul)
#of Array Refs Scalar Replaced in matmul at line 9=36

<matmul.£90;9:9;hlo_linear trans;matmul ;0>
LOOP INTERCHANGE in loops at line: 9 8 7
Loopnest permutation (12 3) --> (2 3 1)

<matmul.£90;9:9;hlo_unroll;matmul ;0>
Loop at line 9 blocked by 128

blocked by 128
blocked by 128
unrolled and jammed by 4
unrolled and jammed by 4

Loop at line
Loop at line
Loop at line
Loop at line

<N 00 0

Lyon — 25 Feb 2014

subroutine matmul (a,b,c,n)
real(8) a(n,n),b(n,n),c(n,n)

do j=1,n
do i=1,n
do k=1,n
C(jli):C(jI
enddo
enddo
enddo
end

i)+a(k,1)*b(J, k)

Bulk

Architect of an Open Waorld

ALIGNEMENT DES DONNEES %

Peut étre pénalisant.
Mieux vaut aligner les données sur la taille des vecteurs.

Lignes de cache 64 bytes 64 bytes 64 bytes

Iy 16 16 16 16 16 16 16 16

Non-alignées : : : s : . . . 5
1

Alignées 32 32 32 32

Non-alignées : i***{d

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World™

INTEL DATA ALIGNMENT V4

Compiler can do best optimizations if loads /stores are aligned
* 16 Bytes boundaries for SSE, 32Byte for AVX and 64Bytes for MIC
* Could be imposed for static data __declspec (align(32)) X[1000];
* (v)movupd (vectorload) if unaligned 2x128 stores may be vo::;;:iﬁ:;;jzs;;;a ar)
faster than 1x256 unaligned store. __assume (n1%8=0) ; '

__assume (n2%8=0) ;

. . . for (i=0;i<n;i++) X[i] +=
* Use special malloc libraries a[i+nl]

* posix_memalign(void **memptr, size_t alignment, size_t size); }
* Usein Cvoid* _mm_malloc (int size, int n)
* Compiler creates an n-byte boundary aligned pointer to memory.
* C__ declspec(align(n, [offset])) Fortran !dirS attributes align:n::varname
* Compiler creates the variable aligned on an “n”-byte boundary, with an “offset” in bytes.

e C__assume_aligned(a,n) Fortran !dirS assume_aligned varname:n
* Instructs the compiler to assume that array a is aligned on an n

* #pragma vector aligned
* Vectorize using aligned loads /stores for vector accesses

Lyon — 25 Feb 2014 Architect of an Open World

INTEL COMPILER DATA ALIGNMENT OPTIONS V4

Fortran Compiler options

-align <keyword>

[noJcommons, [no]Jdcommons,[no]Jgcommons, [noJzcommons,
reclbyte, rec2byte, recdbyte,rec8byte, recl6byte, rec32byte,
array8byte, arrayl6byte, array32byte,array64byte,
array128byte, array256byte

-falign-functions=[2|16]
align the start of functions on a 2 (DEFAULT) or 16 byte
boundary

-Zp[n] specify alighnment constraint for structures
InC
-[no]align

analyze and reorder memory layout for variables and
arrays

Lyon — 25 Feb 2014

subroutine foo(a,f2,st,rep,rstr)

real*8 :: a(*),al

integer f2,st,rep,rstr,i

IDIRS ASSUME_ALIGNED A: 64

IDIRS ASSUME (mod(f2,8) .eq. 0)

'dir$ simd

do i=1, (rep-1) *rstr+l
al=a(i)+a(f2*st+i)
a(f2*st+i)=a(i)-a(f2*st+1i)
a(i)=al

enddo

end subroutine

Bulk

Architect of an Open Waorld

ALIGNEMENT DES DONNEES -

#define N 1000000000 #define N 1000000000

double A[N] ; double A[N] _ attribute_((aligned(64)));
double BI[N] ; double B[N] __ attribute_ ((aligned(64)));
double SI[N] ; double S[N] __ attribute_ ((aligned(64)));

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World”

ALIGNEMENT DES DONNEES o

#define N 1000000000

double A[N] __ attribute_((aligned(64)));
double B[N] __ attribute_((aligned(64)));
double S[N] _ attribute ((aligned(64))):

#pragma omp parallel for
#pragma vector aligned(A,B,C)
for (1=0; i<N;i+=1)
{
Cl[i]
Ali]
B[i]

0.0;
1.0;
0.1

4

* @ * @
—~ i

> OMP_NUM_THREADS=10 ./daxpy.x 1.000C..
Go!

Done!! C)

i=1000000000 3=10

T=15972239952 cycles, 5.70 sec, avg=1ll g

42072.07051 MB/s

3506.00588 MFLOPS/s ® o
N

> OMP NUM_ THREADS=12 ./daxpy.x 1.000001
Segmentation fault
wlt

Lyon — 25 Feb 2014 Architect of an Dpen World"

INTEL TUNING EXAMPLE FINITE DIFFERENCE METHOD -

Isotropic Wave Equation :

1 0°P (0°P 82P 82P
Vo o oy’ NEE

order-k in space stencil (here k is 4 or 8) -
memory bandwidth bound code

Written in C/C++

Starting version using aligned arrays
Performance Measure : Mpoints/second

Lyon — 25 Feb 2014

FINITE DIFFERENCES - STENCIL COMPUTATION S

No problem for vectorization, parallelization or loop changes.

3 dimensions * 8 values = 24+1 point stencil

A single stencil computation underutilizes 4*4=16 cache lines by
accessing only one floating-point value from each of these cache-

lines. Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World™

FINITE DIFFERENCES - STENCIL COMPUTATION S

N

NP
R
—
|

TN

i

<f
=

VTR . VL N |

19 SSE registers being used to compute 4 stencils simultaneously.
At least four floating-point elements are loaded from each cache-
line, and twelve floating point elements belong to the cache-
line(s) holding the X-direction elements.

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World™

FINITE DIFFERENCES - STENCIL COMPUTATION S

Optimization with:
Block on Y and on X

Use an additional “helper loop” over k called writing into small
. . &
vectors in a separate function. Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World™

INTEL TUNING EXAMPLE

Lyon — 25 Feb 2014

INTEL AND AMD SSE/AVX

2007: Intel (Woodcrest) and AMD (Barcelona) SSE 128bit (data paths and FP units)
2x speed-up of vectorized codes for DP using packed SSE instructions T
Chips suffering from peak transfer rate vs peak FP performance (L1,L2,Memory) — e

[
¥l scheduler CORER

2011: Intel (SandyBridge) and AMD (Bulldozer) AVX 256bit o 5 H 1 E
again a possible 2x speed-up of vectorized codes ... g.% HHE S
Impressive : with even more cores, the peak transfer rate vs peak FP performance L1 DCache
has slightly improved (additional ports, faster memory).
VEX prefix 256 SIMD support can run 3 or 4 operand syntax (compared to 2 for x86 ISA) Sharad L3 Cache snd N8

AVX needs vectorization

The 2x can not be reached for real applications.
From Westmere (Nehalem) to SandyBridge not all components scale 2x (especially the L2/L3 cache bandwidth)

LMBench. Expect a 1.2-1.4x ! 255 128 |127 0

xmmO

AMD shares FP unit for 2 cores. AMD extends FMA4 instructions (fused multiply-add).
AMD can run the threads using floating points in 256-bit AVX mode (scheduling ymm-based operations over the
entire FP unit) or can use just one lane of the shared FP unit (xmm 128-bit) with VEX or SSE code.

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World"

CONCLUSION COMPILERS OPTIMIZATION V4

Compiler works well
* Local Optimization on basic blocks (branchless statements)
* common sub-expression elimination, redundant load and store elimination
* scheduling, strength reduction, peephole optimizations.
* Loop Optimization
* unrolling, vectorization
* Function Inlining
* increase code size and generate less efficient code
* Global Optimization (ipo)

Compiler needs guidance
* Loop and “adjacent loops” optimization
* Peeling, blocking, fusion or fission of adjacent loops :
* Data locality and re-usage (change from memory bandwidth bound to cpu bound)
* dataalignment
* Block into L3 to optimize TLB
* Global Optimization using Profile-Feedback Optimization (PFO), profile guided (PGO) .BUE

Lyon — 25 Feb 2014 Architect of an Dpen World

THANK YOU !

GUNTER.ROETH@BULL.NET

Bulk

\ Architect of an Open World”

Lyon — 25 Feb 2014

STATISTIQUES NUMA

Disponibles via :

« /sys/devices/system/node/node*/numastat

la commande numastat > memeeioi
) .y s node0 nodel
* Lunlte est Ia page (4K) numa hit 37270443889 41299449921
Z A z numa miss 1738099296 3204337700
[] —
Tout ¢a merite d etre enrObe numa_ foreign 3204337700 1738099296
interleave hit 1347000 1243207
'In(*;q'l_nnda 37266097532 41250383644
e s numa_hit is the number of allocations where an allocation was intended for that node and succeeded there.
e, We numa_miss shows how often an allocation was intended for this node, but ended up on another node due to low
memory.
e e numa_foreign is the number of allocations that were intended for another node, but ended up on this node. Each
numa_foreign event has a numa_miss on another node.
interleave hit interleave_hit is the number of interleave policy allocations that were intended for a specific node and succeeded
there.
local node local_node is incremented when a process running on the node allocated memory on the same node.
Oitlier_nedls other_node is incremented when a process running on another node allocated memory on that node.

Lyon — 25 Feb 2014

SANDY BRIDGE: EXECUTION UNITS S

)
—

Uniiiec Reservation Station
- ~ (¢ <

o n

= &= =) o= &= =

S | . - S | . S

(o) (o) o o o) (o)
v o v o va yao v o

v O
Integer l Integer ‘ l Load & ‘ l | ‘ l Integer ‘
— - Up to 6 instructions per cycle: -
* 3 memory instructions

Vector Int [Vector Int ‘ (P2,3,4) l Vector Int ‘
* 3 compute instructions
Vector Vector (P0,1,5) Vector
. En particulier 2

instructions ADD ou

MUL en FP
. L2 Cache
Instruction Set SP FLOPs per DP FLOPs per L1 Cache Bandwidth Bandwidth
cycle per core cycle per core (Bytes/cycle) (Bytes/cycle)
AVX .
. 16 8 48 (32B read + 16B write) 32
VeCtO r (256-bits)

B R

Bulk

Lyon — 25 Feb 2014 Architect of an Dpen World™

COMPILER TARGETS : INTEL AND AMD

e Fetch
Intel SandyBridge L5330, dual socket 8 cores per socket Sehedifen) e
Intel MIC Xeon Phi Co-processor >50 cores on a socket core 1) Schecyluler \corEm
AMD Bulldozer 2 integer cores sharing a FP unit 16 cores per socket §.| : li

Very different CPU architecture L1 DCache L1 DCache
all processors need vectorization to run at highest possible speed !

III III Shared L3 Cache and NB

QP! H QPI H

Il - Il
C2

- Il
co 7 co

Il & Il
o

Bulk

Lyon — 25 Feb 2014 Architect of an Open Warld”

