
Unveiling some Mysteries
of Application Performance
on Multi-/Manycore Processors

Gerhard Wellein, Georg Hager
Erlangen Regional Computing Center & Dept. of Computer Science
Friedrich-Alexander-University Erlangen-Nuremberg

12/14/2012 Mysteries of Application Performance 1

As time goes by….

MediaMarkt 2003

MediaMarkt 2011
12/14/2012 Mysteries of Application Performance 2

Exponential growth of x86-CPU clock speed for 15+ years
Since 2004 the 4 GHz barrier limits x86 clock speed

0,1

10

1000

Fr
eq

ue
nc

y
[M

Hz
]

The end of the clock speed race

Fastest Intel x86 clock speed
Higher clock speeds require special efforts

12/14/2012 Mysteries of Application Performance 3

 Technology trends and state-of-the-art multi-/manycore processors

 Mysteries

 The programming language is critical for performance

 Even with simple loop structures the compiler fails to parallelize / vectorize

 Performance is a black box – take what you get

 Sometimes it is so easy to scale on multicore chips

 Erratic performance numbers on multi-processor nodes (NUMA)

12/14/2012 4Mysteries of Application Performance

Technology trend: Moore’s law continues…

Electronics Magazine, April 1965:
The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year…
Certainly over the short
term this rate can be expected
to continue, if not to increase.

NVIDIA Kepler: ~7.1 billion
Intel SNB EP: ~2.2 billion

Intel Corp

www.wikipedia.de

12/14/2012 5Mysteries of Application Performance

Frequency [MHz]

0,1

1

10

100

1000

10000

19
71

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

20
09

Year

 Moore’s law  run smaller transistors faster
 Faster clock speed  Higher Throughput (Ops/s) for free

Technology trend: … but the free lunch is over

Intel x86 processor
clock speed

Single core: Instruction
level parallelism:
• Superscalarity

• Single Instruction Multiple
Data (SIMD)  SSE / AVX

Investing the
transistor budget:
• Multi-Core/Threading

• Complex on chip caches

• New on-chip functionalities
(GPU, PCIe,…)

12/14/2012 6Mysteries of Application Performance

The physical constraint: Power consumption

 Power consumption (PT) per transistor: PT ~ VC * f
 Supply voltage approaches a lower limit: VC ~ 1 V
 Power consumption / chip: P ~ #Transistors * PT

 Max. P approaches economical limit: Pmax ~ 80 W,…,130 W

P5 / 80586 (1993) Pentium3 (1999) Pentium4 (2003) Core i7–3960X (2012)

66 MHz 600 MHz 2800 MHz 3300 MHz

16 W @ VC = 5 V 23 W @ VC = 2 V 68 W @ VC = 1.5 V 130 W @ VC = 1.3

800 nm / 3 M 250 nm / 28 M 130 nm / 55 M 32 nm / 2200 M

Structure Size /
#Transistors

Pmax /
Core supply voltage

Hexa‐Core

2

Be prepared for more cores with less complexity and slower clock!

12/14/2012 7Mysteries of Application Performance

There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * 

ncore number of cores: 8

F FP instructions per cycle: 2
(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)
(256 Bit SIMD registers – “AVX”)

 Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon
“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non‐SIMD code

TOP500 rank 1 (1995)

12/14/2012 8Mysteries of Application Performance

Highly parallel on-chip architectures: Accelerators

 Intel Xeon/Phi
 60+ IA32 cores each with 512 Bit SIMD

FMA unit  960 “SIMD SP tracks”

 Clock Speed: ~1000 MHz
 Transistor count: ~3 B (22nm)
 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s
 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 100-200
 Programming: Fortan/C/C++ +OpenMP +

vectorization

 TOP7: “Stampede” at Texas Center
for Advanced Computing

• NVIDIA Kepler (GK110)
– 15 SMX units each with 192 “SP

cores”  2880 “SP cores” in total

– Clock Speed: ~700 MHz
– Transistor count: 7.1 B (28nm)
– Power consumption: ~250 W

– Peak Performance (DP): ~ 1 TF/s
– Memory BW: ~ 250 GB/s (GDDR5)

– Threads to execute: 10.000+
– Programming: CUDA, OpenCL,

(OpenACC)

– TOP1: “Titan” at Oak Ridge
National Laboratory

TOP500
rankings

Mysteries of Application Performance 912/14/2012

10

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU
light speed estimate:

1. Compute bound (DP): 2x-4x
Compute bound (SP): 5-10x

2. Memory Bandwidth: 2x-4x

Intel Core i7 –3960x
(“Sandy Bridge”)

Intel Xeon E5-2680 DP
node (“Sandy Bridge”)

NVIDIA K20
(“Kepler”)

Cores@Clock 6 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2496 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <6 <16 >8000?
Total performance+ 315 GFlop/s 691 GFlop/s 3,500 GFlop/s

Stream BW ~40 GB/s 2 x ~40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 2.2 Billion* / 130 W 2 x (2.27 Billion/130W) 7.1 Billion/250W
* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device

12/14/2012 Mysteries of Application Performance

Trends to remember

 “Few” cores@high clock speeds


Massive number of
execution units@low clock speed

 Complex topology issues within compute node
 Simultaneous Multi-Threading
 Shared vs. dedicated caches
 ccNUMA
 Device vs. host memory

12/14/2012 Mysteries of Application Performance 11

GPU #1

GPU #2
PCIe link

Other I/O

Mystery

The programming language is critical for
performance

C / C++ / FORTRAN,…, Java or OpenCL
Application scenario: sparse matrix-vector multiply

13

Sparse matrix-vector multiply (spMVM)

 Key ingredient in sparse solvers for Finite-Element-Method or in
Quantum Physics/Chemistry

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors
with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:
some indirect
addressing
required!

12/14/2012 Mysteries of Application Performance

14

…

CRS matrix storage scheme

column index
ro

w
 in

de
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length:
Nr)

12/14/2012 Mysteries of Application Performance

15

Impact of programming language/style
A representative example ?!

 Sparse matrix-vector multiplication: y = y + M*x

 The classical Fortran/C approach:
Compressed Row Storage (CRS) for matrix M

Sparse MVM code snippet:

for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];

}}}

12/14/2012 Mysteries of Application Performance

16

Impact of programming language/style
A representative example?!

 spMVM (within Finite-Element Method): y = y + M*x

 The object oriented C++ approach for FEM:
Consider each row of M as an object, e.g. the stencil of a node in
FEM  Matrix M is a vector of “stencils”

for(i=0; i < number_of_unknowns; ++i){
for(j=0; j < stencil_array[i].m_row_stencil_length;++j){

y.m_vektor[i] = y.m_vektor[i] +
stencil_array[i].m_row_stencil[j] *
x.m_vektor[stencil_array[i].m_row_position[j]];

}}}

//Class Stencil
class Stencil{ int m_row_stencil_length; double *m_row_stencil;
int *m_row_position; }

12/14/2012 Mysteries of Application Performance

17

 FEM-oriented spMVM: y = y + M*x

 Problem: FEM on semi structured grid with 55056 vertices

 Serial Performance of
simple CG solver
including spMVM

 Testmachine:
Intel Core2 2 .26GHz
(Penryn)

 Object orientation may be orthognal to performance

Impact of programming language/style
A representative example?!

82

610

0

100

200

300

400

500

600

700

M
Fl

op
/s

Object Oriented Classical CRS

8 X

12/14/2012 Mysteries of Application Performance

18

Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

GPU #1

GPU #2

#pragma acc for
for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];}}

size_t i = get_global_id(0);
if (i < number_of_unknowns) {

for(int j=row[i]; j<row[i+1]; ++j) {

y[i] = y[i] + entry[j]*= x[column[j]];}}

12/14/2012 Mysteries of Application Performance

19

Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

 All kernels written in OpenCL

 Data format is the key to
performance!

 Even with OpenCL:
CPU and GPU code branch

 Best data layout: 1 Kepler / 1 Intel Xeon processor: ~3.2-3.4
(As suggested by STREAM bandwidth)

spMVM
format dlr1 rrze3 RM07R copy

BW
GPU/
CPU

Intel
Xeon E5-2690 CRS 6.5 4.5 6.2 39

GB/s 1

Tesla K20c
(Kepler)

CRS 1.3 1.6 1.8
144
GB/s 3.7ELL-R 22.5 14.0 13.0

Best 22.6 15.7 19.9

12/14/2012 Mysteries of Application Performance

20

A few comments on programming language/style

 Don’t be religious about programming style!
 IF you program C++ like Fortran  Fortran performance
 BUT do students still know Fortran?!

 Adopt programming style to problem and hardware (if
performance is critical for you)
 Performance for a complex problem on a complex

hardware is NOT for free

 Conservation law of hardware efficient programming
PERFORMANCE * FLEXIBILITY = constant

12/14/2012 Mysteries of Application Performance

Mystery

Even with simple loop structures
the compiler fails to parallelize / vectorize

Intel compiler
Prototype scenario: 3D stencil / Jacobi

22

Compiler based parallelization for 3D stencil

 “Jacobi iteration”
 Finite difference discretization of Laplace equation in 3D
 Use Jacobi method to solve the corresponding linear system of equations
 Prototype for many regular stencil update scheme, e.g. in Multigrid schmes

 No data dependencies  easy to parallelize
 Is the compiler clever enough?!

void jacobi_full(double *Y, const double *X, int size) {
int i,j,k,ofs;

#pragma omp parallel for private(ofs,i,j,k)
for(i=1; i<size-1; ++i) {
for(j=1; j<size-1; ++j) {
ofs = i*size*size + j*size;
for(k=1; k<size-1; ++k) {
Y[ofs+k] = oos*(X[ofs+k+1]+X[ofs+k-1]+X[ofs+k-size]+

X[ofs+k+size]+X[ofs+k-size*size]+X[ofs+k+size*size]);

}}}}

12/14/2012 Mysteries of Application Performance

23

Compiler based automatic parallelization

 Compiler: Intel C-compiler (Version 13.0.1.117 Build 20121010)
 1st try:

 Pointer aliasing in C  Compiler assumes pot. dependency: YX
 2nd try:

 3rd try:

>icc -O3 -xHOST -par-report2 -parallel -c j3d_c.c
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: existence of parallel dependence.

>icc -O3 -xHOST -par-report2 -parallel –fno-alias -c j3d_c.c
…
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: insufficient computational work.

>icc -O3 -xHOST -par-report2 -parallel –fno-alias –par-threshold0 -c j3d_c.c
…
j3d_c.c(37): (col. 7) remark: LOOP WAS AUTO-PARALLELIZED.

12/14/2012 Mysteries of Application Performance

24

Compiler based (automatic) parallelization

 Intel Xeon E5-2690 (8 cores, 2.9 GHz)
 Testcase: 2403

 Serial performance: 521 MLUP/s (=3.1 GF/s)

 Parallel performance (higher is better)

 Compiler version suffers from overhead of inner loop parallelization!

threads Compiler OpenMP
1 312 519
2 195 902
4 181 1353
6 156 1390
8 151 1377

12/14/2012 Mysteries of Application Performance

25

Support our compiler!

 Recognizing data parallel structures is essential for automatic
parallelization / vectorization

 Compiler has a limited view of the code

 Do not completely rely on the compiler (or other software layer)
support it:
 Plain programming – do not hide information!
 Use compiler directives / pragmas / …. to support vectorization and

parallelization
 Inlining often helps
 Even with highest optimization level your code should produce correct

results

12/14/2012 Mysteries of Application Performance

Mystery

Performance is a black box – take what you get

Prototype scenario: Jacobi

27

 Equivalent Fortran version

 BTW:
 Compiler parallelizes outer loop in Fortran
 Performance of Fortran is the same as OpenMP C-Code (assuming

comparable compiler switches)

 What is the maximum performance on Intel Xeon E5-2690 (8 cores,
2.9 GHz)?

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo

12/14/2012 Mysteries of Application Performance

28

 Assumption: Main memory bandwidth limits Jacobi performance
 STREAM bandwidth~ 36 GB/s
 How many data must be transferred between processor and main

memory for a single Lattice Update (assume DP)
 y(i,j,k): (1 STORE + 1 LOAD) * 8 B  16 B/LUP
 x(i,j,k+1) 1 LOAD * 8B  8 B/LUP

 Maximum Performance: (36 GB/s) / (24 B/LUP) = 1500 MLUP/s

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo

Requires “Write Allocate”

Elements have been loaded in
previous (i,j,k) iterations

12/14/2012 Mysteries of Application Performance

Mystery

Sometimes it is so easy to scale on multicore chips

Prototype scenario: Jacobi

30

Multicore scalability mystery: Jacobi iteration

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N; do i = 1 , N

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Changing only a few
letters makes this code
scalable on a 8-core chip

ifort –O3 -axAVX

12/14/2012 Mysteries of Application Performance

31

Multicore scalability mystery: Jacobi iteration

!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Single core/socket efficiency
is key issue!

Simple performance model:
• 24 Byte / LUP
• Socket Bandwidth:

36 GB/s
 Max. 1500 MLUP/s

12/14/2012 Mysteries of Application Performance

32

Summary: Performance and Scalability

 When optimizing / parallelizing performance critical code (even
simple) performance models help a lot

 Having a good estimate of the optimal runtime of a code is the first
step of any optimization/parallelization attempt

 Achieving scalability is easy  Compare with a bad baseline
(“Slow computing”)

 Single core/thread/process performance should be the first target

12/14/2012 Mysteries of Application Performance

Mystery

Erratic performance numbers on multi-processor
nodes (ccNUMA)

Prototype scenario: STREAM

34

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the
price of ccNUMA architectures: Where
does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

12/14/2012 Mysteries of Application Performance

35

ccNUMA performance problems
Affinity matters
 ccNUMA:

 Whole memory is transparently accessible by all processors
 but physically distributed
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"
and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly
more)
 Be aware that you are not the only one using memory (even on a dedicated

node)

C C C C

M M

C C C C

M M

12/14/2012 Mysteries of Application Performance

36

STREAM benchmark on 2x6-core Intel Westmere
Anarchy vs. thread pinning

No pinning: Strong
performance fluctuations (2x)!

Pinning (physical cores first,
alternating sockets)

Pinning threads on ccNUMA is a must:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

12/14/2012 Mysteries of Application Performance

37

Erratic performance on ccNUMA nodes

 Thread pinning is essential!

 Data distribution within OpenMP codes must be correctly done by
programmer  first touch

 Even MPI applications suffer in some cases from data locality
issues:
 OS allocates (file) buffers  Your MPI performance may depend on the

type of the previous jobs!
 Only system administrator can release the OS buffer at OS level
 User may use a sweeper code…. (Touch all available memory in the node

once then OS releases the buffer)

12/14/2012 Mysteries of Application Performance

38

LIKWID: Lightweight Performance Tools for
efficiently using and programming multicores

 Lightweight command line tools for Linux
 Help to face the challenges without getting in the way
 Focus on X86 architecture
 Philosophy:

 Simple
 Efficient
 Portable
 Extensible

 Get around some
some mysteries
with LIKWID, e.g.
pinning

Open source project (GPL v2):
http://code.google.com/p/likwid/

12/14/2012 Mysteries of Application Performance

39

THANK YOU.

Jan Treibig
Johannes Habich

Moritz Kreutzer
Markus Wittmann

Thomas Zeiser
Michael Meier

Faisal Shahzad
Gerald Schubert

OMI4papps
HQS@HPC II

hpcADD
SKALB

12/14/2012 Mysteries of Application Performance

40

References

Books:
 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:
 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties

of modern multicore chips via simple machine models. Accepted. Preprint: arXiv:1208.2908
 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern

multicore processors: Best practices for performance engineering. Workshop on Productivity
and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island,
Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse
Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable
Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),
DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI
10.1016/j.jocs.2011.01.010

BLOG: http://blogs.fau.de/hager/

12/14/2012 Mysteries of Application Performance

41

References
Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking
for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC
2009.
DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters. Parallel
Processing Letters 20 (4), 359-376 (2010).
DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.
DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-based systems.
Parallel Processing Letters 21(3), 339-358 (2011).
DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).
DOI 10.1016/j.jocs.2011.01.010

12/14/2012 Mysteries of Application Performance

NVIDIA Kepler GK110 Block Diagram

Architecture
 7.1B Transistors
 15 “SMX” units

 192 (SP) “cores” each
 > 1 TFLOP DP peak
 1.5 MB L2 Cache
 384-bit GDDR5
 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

Intel Xeon Phi block diagram

Architecture
 3B Transistors
 60+ cores
 512 bit SIMD
 ≈ 1 TFLOP DP

peak
 0.5 MB

L2/core
 GDDR5

 2:1 SP:DP
performance

64 byte/cy

