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As time goes by….

MediaMarkt 2003

MediaMarkt 2011
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Exponential growth of x86-CPU clock speed for 15+ years
Since 2004 the 4 GHz barrier limits x86 clock speed 
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The end of the clock speed race 

Fastest Intel x86 clock speed
Higher clock speeds require special efforts
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 Technology trends and state-of-the-art multi-/manycore processors

 Mysteries

 The programming language is critical for performance

 Even with simple loop structures the compiler fails to parallelize / vectorize

 Performance is a black box – take what you get

 Sometimes it is so easy to scale on multicore chips 

 Erratic performance numbers on multi-processor nodes (NUMA)
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Technology trend: Moore’s law continues…

Electronics Magazine, April 1965:  
The complexity for minimum component costs has 
increased at a rate of roughly a factor of two per year… 
Certainly over the short 
term this rate can be expected 
to continue, if not to increase. 

NVIDIA Kepler: ~7.1 billion
Intel SNB EP: ~2.2 billion

Intel Corp

www.wikipedia.de
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 Moore’s law   run smaller transistors faster
 Faster clock speed   Higher Throughput (Ops/s) for free

Technology trend: … but the free lunch is over

Intel x86 processor
clock speed

Single core: Instruction 
level parallelism:
• Superscalarity

• Single Instruction Multiple
Data (SIMD)  SSE / AVX

Investing the 
transistor budget:
• Multi-Core/Threading

• Complex on chip caches 

• New on-chip functionalities
(GPU, PCIe,…)
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The physical constraint: Power consumption

 Power consumption (PT) per transistor: PT ~ VC * f 
 Supply voltage approaches a lower limit: VC ~ 1 V
 Power consumption / chip: P ~ #Transistors * PT

 Max. P approaches economical limit: Pmax ~ 80 W,…,130 W

P5 / 80586 (1993) Pentium3 (1999) Pentium4 (2003) Core i7–3960X (2012)

66 MHz 600 MHz 2800 MHz 3300 MHz

16 W @ VC = 5 V 23 W @ VC = 2 V 68 W @ VC = 1.5 V 130 W @ VC = 1.3

800 nm / 3 M 250 nm / 28 M 130 nm / 55 M 32 nm / 2200 M

Structure Size / 
#Transistors

Pmax / 
Core supply voltage

Hexa‐Core

2

Be prepared for more cores with less complexity and slower clock!
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There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * 

ncore number of cores: 8

F FP instructions per cycle: 2 
(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp) 
(256 Bit SIMD registers – “AVX”)

 Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon
“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non‐SIMD code 

TOP500 rank 1 (1995)
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Highly parallel on-chip architectures: Accelerators

 Intel Xeon/Phi
 60+ IA32 cores each with 512 Bit SIMD 

FMA unit  960 “SIMD SP tracks”

 Clock Speed: ~1000 MHz
 Transistor count: ~3 B (22nm)
 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s
 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 100-200
 Programming: Fortan/C/C++ +OpenMP + 

vectorization

 TOP7: “Stampede” at Texas Center 
for Advanced Computing

• NVIDIA Kepler (GK110)
– 15 SMX units each with 192 “SP 

cores”  2880 “SP cores” in total

– Clock Speed: ~700 MHz
– Transistor count: 7.1 B (28nm)
– Power consumption: ~250 W

– Peak Performance (DP): ~ 1 TF/s
– Memory BW:  ~ 250 GB/s (GDDR5)

– Threads to execute: 10.000+
– Programming: CUDA, OpenCL, 

(OpenACC)

– TOP1: “Titan” at Oak Ridge 
National Laboratory

TOP500
rankings 
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Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU 
light speed estimate:

1. Compute bound (DP): 2x-4x 
Compute bound (SP): 5-10x

2. Memory Bandwidth:   2x-4x

Intel Core i7 –3960x 
(“Sandy Bridge”)

Intel Xeon E5-2680 DP 
node (“Sandy Bridge”)

NVIDIA K20 
(“Kepler”)

Cores@Clock 6 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2496 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <6 <16 >8000?
Total performance+ 315 GFlop/s 691 GFlop/s 3,500 GFlop/s

Stream BW ~40 GB/s 2 x ~40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 2.2 Billion* / 130 W 2 x (2.27 Billion/130W) 7.1 Billion/250W
* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device
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Trends to remember

 “Few” cores@high clock speeds 


Massive number of 
execution units@low clock speed

 Complex topology issues within compute node
 Simultaneous Multi-Threading
 Shared vs. dedicated caches
 ccNUMA
 Device vs. host memory 
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GPU #1

GPU #2
PCIe link

Other I/O



Mystery

The programming language is critical for 
performance

C / C++ / FORTRAN,…, Java or OpenCL
Application scenario: sparse matrix-vector multiply 
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Sparse matrix-vector multiply (spMVM)

 Key ingredient in sparse solvers for Finite-Element-Method or in 
Quantum Physics/Chemistry

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 
with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case: 
some indirect 
addressing 
required!
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…

CRS matrix storage scheme

column index
ro

w
 in

de
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index 
of each nonzero (length Nnz)

 row_ptr[] stores the starting index 
of each new row in val[] (length: 
Nr)
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Impact of programming language/style
A representative example ?! 

 Sparse matrix-vector multiplication: y = y + M*x

 The classical Fortran/C approach: 
Compressed Row Storage (CRS) for matrix M

Sparse MVM code snippet:

for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];

}}}
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Impact of programming language/style
A representative example?!

 spMVM (within  Finite-Element Method): y = y + M*x

 The object oriented C++ approach for FEM: 
Consider each row of M as an object, e.g. the stencil of a node in 
FEM  Matrix M is a vector of “stencils”

for(i=0; i < number_of_unknowns; ++i){
for(j=0; j < stencil_array[i].m_row_stencil_length;++j){

y.m_vektor[i] = y.m_vektor[i] + 
stencil_array[i].m_row_stencil[j] * 
x.m_vektor[stencil_array[i].m_row_position[j]];

}}}

//Class Stencil
class Stencil{ int m_row_stencil_length; double *m_row_stencil; 
int *m_row_position; }
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 FEM-oriented spMVM: y = y + M*x

 Problem: FEM on semi structured grid with 55056 vertices

 Serial Performance of
simple CG solver
including spMVM

 Testmachine:
Intel Core2 2 .26GHz
(Penryn)

 Object orientation may be orthognal to performance

Impact of programming language/style
A representative example?!
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Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

GPU #1

GPU #2

#pragma acc for
for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];}}

size_t i = get_global_id(0); 
if (i < number_of_unknowns) { 

for(int j=row[i]; j<row[i+1]; ++j) { 

y[i] = y[i] + entry[j]*= x[column[j]];}} 
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Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

 All kernels written in OpenCL

 Data format is the key to
performance!

 Even with OpenCL: 
CPU and GPU code branch

 Best data layout: 1 Kepler / 1 Intel Xeon processor: ~3.2-3.4
(As suggested by STREAM bandwidth)

spMVM
format dlr1 rrze3 RM07R copy

BW
GPU/
CPU

Intel
Xeon E5-2690 CRS 6.5 4.5 6.2 39 

GB/s 1

Tesla K20c 
(Kepler)

CRS 1.3 1.6 1.8
144 
GB/s 3.7ELL-R 22.5 14.0 13.0

Best 22.6 15.7 19.9
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A few comments on programming language/style

 Don’t be religious about programming style!
 IF you program C++ like Fortran  Fortran performance
 BUT do students still know Fortran?!

 Adopt programming style to problem and hardware (if 
performance is critical for you)
 Performance for a complex problem on a complex 

hardware is NOT for free

 Conservation law of hardware efficient programming
PERFORMANCE * FLEXIBILITY = constant
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Mystery

Even with simple loop structures 
the compiler fails to parallelize / vectorize

Intel compiler
Prototype scenario: 3D stencil / Jacobi
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Compiler based parallelization for 3D stencil 

 “Jacobi iteration” 
 Finite difference discretization of Laplace equation in 3D
 Use Jacobi method to solve the corresponding linear system of equations
 Prototype for many regular stencil update scheme, e.g. in Multigrid schmes

 No data dependencies  easy to parallelize
 Is the compiler clever enough?!

void jacobi_full( double *Y, const double *X, int size) {
int i,j,k,ofs;

#pragma omp parallel for private(ofs,i,j,k)
for(i=1; i<size-1; ++i) {
for(j=1; j<size-1; ++j) {
ofs = i*size*size + j*size;
for(k=1; k<size-1; ++k) {
Y[ofs+k] = oos*(X[ofs+k+1]+X[ofs+k-1]+X[ofs+k-size]+

X[ofs+k+size]+X[ofs+k-size*size]+X[ofs+k+size*size]);

}}}}
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Compiler based automatic parallelization

 Compiler: Intel C-compiler (Version 13.0.1.117 Build 20121010)
 1st try:

 Pointer aliasing in C  Compiler assumes pot. dependency: YX
 2nd try:  

 3rd try:

>icc -O3 -xHOST -par-report2  -parallel -c j3d_c.c
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: existence of parallel dependence.

>icc -O3 -xHOST -par-report2  -parallel –fno-alias -c j3d_c.c
…
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: insufficient computational work.

>icc -O3 -xHOST -par-report2  -parallel –fno-alias –par-threshold0 -c j3d_c.c
…
j3d_c.c(37): (col. 7) remark: LOOP WAS AUTO-PARALLELIZED.
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Compiler based (automatic) parallelization

 Intel Xeon E5-2690 (8 cores, 2.9 GHz)
 Testcase: 2403

 Serial performance: 521 MLUP/s (=3.1 GF/s)

 Parallel performance (higher is better)

 Compiler version suffers from overhead of inner loop parallelization!

threads Compiler OpenMP
1 312 519
2 195 902
4 181 1353
6 156 1390
8 151 1377
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Support our compiler!

 Recognizing data parallel structures is essential for automatic 
parallelization / vectorization

 Compiler has a limited view of the code 

 Do not completely rely on the compiler (or other software layer) 
support it:
 Plain programming – do not hide information!
 Use compiler directives / pragmas / …. to support vectorization and 

parallelization
 Inlining often helps
 Even with highest optimization level your code should produce correct 

results
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Mystery

Performance is a black box – take what you get

Prototype scenario: Jacobi



27

 Equivalent Fortran version

 BTW: 
 Compiler parallelizes outer loop in Fortran
 Performance of Fortran is the same as OpenMP C-Code (assuming 

comparable compiler switches)

 What is the maximum performance on Intel Xeon E5-2690 (8 cores, 
2.9 GHz)?

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo
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 Assumption: Main memory bandwidth limits Jacobi performance
 STREAM bandwidth~ 36 GB/s
 How many data must be transferred between processor and main 

memory for a single Lattice Update (assume DP)
 y(i,j,k): (1 STORE + 1 LOAD) * 8 B  16 B/LUP
 x(i,j,k+1) 1 LOAD * 8B  8 B/LUP

 Maximum Performance: (36 GB/s) / (24 B/LUP) = 1500 MLUP/s

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo

Requires “Write Allocate”

Elements have been loaded in 
previous (i,j,k) iterations
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Mystery

Sometimes it is so easy to scale on multicore chips 

Prototype scenario: Jacobi
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Multicore scalability mystery: Jacobi iteration 

Prepared for 
the highly 
parallel era!

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N; do i = 1 , N

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Changing only a few 
letters makes this code 
scalable on a 8-core chip

ifort –O3 -axAVX
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Multicore scalability mystery: Jacobi iteration

!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Single core/socket efficiency 
is key issue!

Simple performance model:
• 24 Byte / LUP
• Socket Bandwidth: 

36 GB/s
 Max. 1500 MLUP/s
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Summary: Performance and Scalability

 When optimizing / parallelizing performance critical code (even 
simple) performance models help a lot

 Having a good estimate of the optimal runtime of a code is the first 
step of any optimization/parallelization attempt 

 Achieving scalability is easy  Compare with a bad baseline 
(“Slow computing”)

 Single core/thread/process performance should be the first target
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Mystery

Erratic performance numbers on multi-processor 
nodes (ccNUMA)

Prototype scenario: STREAM
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Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA 
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory 
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the 
price of ccNUMA architectures: Where 
does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!
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ccNUMA performance problems
Affinity matters 
 ccNUMA:

 Whole memory is transparently accessible by all processors
 but physically distributed
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local" 
and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly 
more)
 Be aware that you are not the only one using memory (even on a dedicated 

node)

C C C C

M M

C C C C

M M
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STREAM benchmark on 2x6-core Intel Westmere
Anarchy vs. thread pinning

No pinning: Strong 
performance fluctuations (2x)!

Pinning (physical cores first, 
alternating sockets)

Pinning threads on ccNUMA is a must:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention
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Erratic performance on ccNUMA nodes

 Thread pinning is essential!

 Data distribution within OpenMP codes must be correctly done by 
programmer  first touch

 Even MPI applications suffer in some cases from data locality 
issues:
 OS allocates (file) buffers  Your MPI performance may depend on the 

type of the previous jobs!
 Only system administrator can release the OS buffer at OS level
 User may use a sweeper code…. (Touch all available memory in the node 

once then OS releases the buffer)
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LIKWID: Lightweight Performance Tools for 
efficiently using and programming multicores

 Lightweight  command line tools for Linux
 Help to face the challenges without getting in the way
 Focus on X86 architecture
 Philosophy:

 Simple
 Efficient
 Portable
 Extensible

 Get around some
some mysteries
with LIKWID, e.g.
pinning

Open source project (GPL v2):
http://code.google.com/p/likwid/
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Johannes Habich

Moritz Kreutzer
Markus Wittmann

Thomas Zeiser
Michael Meier

Faisal Shahzad
Gerald Schubert

OMI4papps
HQS@HPC II 

hpcADD
SKALB
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NVIDIA Kepler GK110 Block Diagram

Architecture
 7.1B Transistors
 15 “SMX” units

 192 (SP) “cores” each
 > 1 TFLOP DP peak
 1.5 MB L2 Cache
 384-bit GDDR5
 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.



Intel Xeon Phi block diagram

Architecture
 3B Transistors
 60+ cores
 512 bit SIMD
 ≈ 1 TFLOP DP 

peak
 0.5 MB 

L2/core
 GDDR5

 2:1 SP:DP 
performance

64 byte/cy


