12/14/2012

Unveiling some Mysteries
of Application Performance
on Multi-/Manycore Processors

Gerhard Wellein, Georg Hager

Erlangen Regional Computing Center & Dept. of Computer Science
Friedrich-Alexander-University Erlangen-Nuremberg

Mysteries of Application Performance

As time goes by.... rrT:

-~ | MediaMarkt 2003

2.53 GHz.

40 GB Festplatte.

DVD-ROM/CDRW-Laufwerk. |

—v'—
512 MB DDR Arbeitsspeicher.
nVidia Geforced Grafik mit 32 MB, .

- NUR € 59.90

bai 0% efte ktivem Jahreszins mit 10 Monaten Lautreit.

39 ‘6 G\'ﬂ, 1516“

TUREQ-PROZESSOR
Intel® Core™ i5-2430M
Prozessor
(2,40 GHz, 3 MB Cache)

\

NVIDIA® GeForce® GT540M
Graflkkarte inlt 1.024 ME DDR2 RAM

W

”
MediaMarkt 2011

Sichtbar
Intelligent

12/14/2012 Mysteries of Application Performance 2

The end of the clock speed race rr?_

Exponential growth of x86-CPU clock speed for 15+ years
Since 2004 the 4 GHz barrier limits x86 clock speed

Higher clock speeds require special efforts

£ DDR3'1333 Memory DIMMs/drawer

=y Buffers/DIMM e. los 32 GB"', BwW
1668 snable 4/8/16 GB/cer

12/14/2012 Mysteries of Application Performance 3

= Technology trends and state-of-the-art multi-’'manycore processors

= Mysteries
= The programming language is critical for performance
= Even with simple loop structures the compiler fails to parallelize / vectorize
= Performance is a black box — take what you get
= Sometimes it is SO easy to scale on multicore chips

= Erratic performance numbers on multi-processor nodes (NUMA)

12/14/2012 Mysteries of Application Performance 4

Technology trend: Moore’s law continues... rr. —
16-Core SPARC T3
Six-Core Core i7\
2,600,000,000— T Six-Core Xeon 7400 @®10-Core Xeon Westmere-EX
NVIDIA Kepler: ~7.1 billion oucoeanze " 3 scoe rouey
1,000,000,000 : DN S T N
Intel SNB EP. ~2 2 bl”Ionltanlum2wnh9MBcaChPOV;EF:2. '\;\Sm_fc?%i%g)teron 2400
ltanium 2 @ ggﬁeQDuo 10 ;10000
100,000,000 AMD ks Intel Corp
Pentium 4 @ Barton ® Atom 1 | 1000
. -ﬁHBEZ.m 2 |
S 10,000000- comsoma oy Gaen . . -
3 two years enors | privsay o
5 ZZnm
8 1,000,000 001 10
g ’ l 1970 1980 1990 2000 2010 2020
o
= : : i
Electronics Magazine, April 1965:
100,000 The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year...
Certainly over the short
10,000 1 term this rate can be expected
o to continue, if not to increase.

2,300— 4004@ “RCA 1802

[I I I |
1971 1980 1990 2000 2011

www.wikipedia.de

Date of introduction

12/14/2012 Mysteries of Application Performance

Technology trend: ... but the free lunch is over rr7|:

Moore’s law - run smaller transistors faster
Faster clock speed = Higher Throughput (Ops/s) for free

Frequency [MHz]]]
Single core: Instruction

10000 level parallelism:
1000 | Intel x86 processor * Superscalarity
clock speed « Single Instruction Multiple
Data (SIMD) > SSE / AVX
100
10 Investing the
transistor budget:
1 T ° MUIti'CorelThreading
é\\’ é\@ /\g ogb og; ogza 09@ 0539 @Q’ « Complex on chip caches
1 % % % Vv

* New on-chip functionalities
Year (GPU, PCle,...)

12/14/2012 Mysteries of Application Performance 6

The physical constraint: Power consumption rrle

| LS
= Power consumption (P;) per transistor: Py~ V¢ *f

= Supply voltage approaches a lower limit: V. ~1V

= Power consumption / chip: P ~ #Transistors * P,

= Max. P approaches economical limit: P,.x ~80W,..., 130 W

P5/80586 (1993) | Pentium3 (1999) | Pentium4 (2003) | Core i7—3960X (2012)

66 MHz 600 MHz 2800 MHz 3300 MHz
16W@V@ 22W@V.=2V |[68W@V.=15V | 130W@ V.= 1.3

800nrr{/3M 250 nm /28 M 130 nm /55 M 32 nm /2200 M

I \ Hexa-Core
Prax / Structure Size /
Core supply voltage #Transistors

Be prepared for more cores with less complexity and slower clock!

12/14/2012 Mysteries of Application Performance 7

r

There is no single driving force for chip performance!

L1D L1D

I L2 L2 L2 L2 L.3 L2 L2 L2 L2
: | Memory Interface |
e e e e e e e e = = = 4 -k -F -4 N
{ Memory] F
Intel Xeon
“Sandy Bridge EP” socket S
4,6,8 core variants available
V

TOP500 rank 1 (1995)

Floating Point (FP) Performance:

P=n_,.*F*S*v
number of cores: 8
FP instructions per cycle: 2

(1 MULT and 1 ADD)

FP ops / instruction: 4 (dp) / 8 (sp)
(256 Bit SIMD registers — “AVX”)

Clock speed : -2.7 GHz

P =173 GFJs (dp) / 346 GF/s (sp)

But: P=5 GF/s (dp) for serial, non-SIMD code

12/14/2012

Mysteries of Application Performance 8

Highly parallel on-chip architectures: Accelerators r r e

h—
" Intel Xeon/Phi NVIDIA Kepler (GK110)
= 60+ IA32 cores each with 512 Bit SIMD — 15 SMX units each with 192 “SP

FMA unit - 960 “SIMD SP tracks” cores” -> 2880 “SP cores” in total

= Clock Speed: ~1000 MHz =
= Transistor count: ~3 B (22nm) =
Power consumption: ~250 W

— Clock Speed: ~700 MHz
— Transistor count: 7.1 B (28nm) |
— Power consumption: ~250 W |

= Peak Performance (DP): ~ 1 TF/s — Peak Performance (DP): ~ 1 TF/s

= Memory BW: ~250 GB/s (GDDR5) — Memory BW: ~ 250 GB/s (GDDR5)

= Threads to execute: 100-200 — Threads to execute: 10.000+

= Programming: Fortan/C/C++ +OpenMP + — Programming: CUDA, OpenCL,
vectorization (OpenACC)

= TOP7: “Stampede” at Texas Center TOP500 — TOP1: “Titan” at Oak Ridge
for Advanced Computing rankings National Laboratory

12/14/2012 Mysteries of Application Performance 9

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU

Control ALU ALU

light speed estimate: ALU AU

Compute bound (DP): 2x-4x
Compute bound (SP): 5-10x

Memory Bandwidth: 2x-4x

CPU GPU
Intel Core i7 —3960x | Intel Xeon E5-2680 DP NVIDIA K20
(“Sandy Bridge”) node (“Sandy Bridge”) (“Kepler”)
Cores@Clock 6 @ 3.3 GHz 2X8 @ 2.7 GHz 2496 @ 0.7 GHz
Performance*/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <6 <16 >80007?
Total performance* 315 GFlop/s 691 GFlop/s 3,500 GFlop/s
Stream BW ~40 GB/s 2 x ~40 GB/s 168 GB/s Ecc=1)
Transistors / TDP 2.2 Billion* / 130 W | 2 x (2.27 Billion/130W) | 7.1 Billion/250W

*Single Precision

12/14/2012

* Includes on-chip GPU and PCI-Express Complete compute device

Mysteries of Application Performance

10

Trends to remember rrll_
= “Few” cores@high clock speeds R -
N B
Massive number of =
- - e BT
execution units@low clock speed =t PU

= Complex topology issues within compute node
= Simultaneous Multi-Threading
= Shared vs. dedicated caches
= ccNUMA

= Device vs. host memory
oo v 7| oo T o el o | e el oo el o v [oo T e e e]

1
1
1
1
1
L1D L1D L1D L1D L1D L1D |1
! Other I/O
1
1
1
1

! 1 L
e remepnprece g Memory intertace 5 Cle ik
[Memory } [Memory J

12/14/2012 Mysteries of Application Performance

11

Mystery

The programming language is critical for
performance

C / C++ / FORTRAN,..., Java or OpenCL
Application scenario: sparse matrix-vector multiply

Sparse matrix-vector multiply (spMVM) r r E —

Key ingredient in sparse solvers for Finite-Element-Method or in
Quantum Physics/Chemistry

Store only N, nonzero elements of matrix and RHS, LHS vectors

with N (number of matrix rows) entries
“Sparse”: N, ~ N,

N
General case:
= + o some indirect
JD N addressing
= required!
4
1 N

12/14/2012 Mysteries of Application Performance 13

CRS matrix storage scheme g

column index

1234.. = val[] stores all the nonzeros
(length N,.,)

= col_1dx[] stores the column index
of each nonzero (length N, ,)

= row_ptr[] stores the starting index

of each new row in val [] (Ilength:
N,)

HrWDNPE

row index

0 0 Y O VPO RVEY 1

1(2(3|5(1|2|5(1|3|4|6|3|4|7|1|2|5|8| ... col_idx[]

1(5(8 1215119 ... row_ptr[]

12/14/2012 Mysteries of Application Performance 14

Impact of programming language/style —r—
A representative example ?! |_ r

Sparse matrix-vector multiplication:y = y + M*Xx

The classical Fortran/C approach:
Compressed Row Storage (CRS) for matrix M

row column entry

1 4 6,1 Sparse MVM code snippet:
9 1,8
19 |43
4 7 7,6 for(r = 0; i< number_of_unknowns; ++i){
5,5 _ _ _ _ _
; = for = row(i); 1 < row(i+1);++j){
o3| [39 y[i] =y[i] +entry[j] *x[column[j]];
8 2 3,2
25| 95| 333
36| |35
|] .
| [| |
] [|

12/14/2012 Mysteries of Application Performance 15

Impact of programming language/style —r—
A representative example?! I_ r

spMVM (within Finite-Element Method):y = y + M*X

The object oriented C++ approach for FEM:
Consider each row of M as an object, e.g. the stencil of a node in
FEM - Matrix M is a vector of “stencils”

for(i=0; i < number_of unknowns; ++i){
for(j=0; j < stencil _array[i].-m_row stencil _length;++j){

y.m vektor[i] = y.m vektor[i] +
stencil _array[i1].m row _stencil[j] *
x.m vektor[stencil _array[i1].m row position[j]l];

i3d,

//Class Stencil
class Stencil{ int m_row _stencil length; double *m_row stencil;

INt *m_row_position; }

12/14/2012 Mysteries of Application Performance 16

Impact of programming language/style —r—
A representative example?! r r

FEM-oriented spMVM:y = y + M*X

Problem: FEM on semi structured grid with 55056 vertices

Serial Performance of 700

simple CG solver 600-

including spMVM 500
(2]

_ 2 400-
Testmachine: u_?

Intel Core2 2 .26GHz s 300

(Penryn) 200 -

100+

Object Oriented Classical CRS

-> Object orientation may be orthognal to performance

12/14/2012 Mysteries of Application Performance 17

Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

size t i = get _global id(0); R\
iT (i < number_of _unknowns) { f /‘
for(int j=row[i]; j<row[i+1]; ++j) { cL

pen
yLil = y[il + entry[j]1*= x[column[j]] 1}

I 1
e 72| |7t | w2 {11 | 2 [71 | 72| [1 [72|71 | 2 (e 727t | o [v1 | 72| [[72| 71 | 72| e | 2
1 ! 1 !
! P/PI|[PI|[P|[P P ! P(|PI|P|P|P|P]|
(1o |[o |[tp |[o |[wo |[wb |1 [t |[wp |[Lo |[L |[Lb || Lo |
2 [z |[ee [z [[2 |[t2 ' [z |tz |[t2][tz]|[rz |2t
I I
| L3 P L3 |
I 1
i Memory Interface | Memory Interface |
|

[Memory

| [e)

for(g =

#pragma acc for OpenACC.

for(i = 0; i< number_of _unknowns; ++i1){

DIRECTIVES FOR ACCELERATORS

row(i); i < row(i+1);++j){
yL[il =y[i] +entry[j] *x[column[j]];}}

12/14/2012

Mysteries of Application Performance

18

Programming for heterogeneous systems:

A unified code for CPU and Accelerators?

All kernels written in OpenCL

Data format is the key to

performance! - N \
: | N
Even with OpenCL.: Q\ o —
CPU and GPU code branch \ j
spMVM copy | GPU/
. format dir1 rrze3 RMO7R BW CPU
ellee|[e]le]p]le | [p]
—— Intel 39
[]”!M[| Xeon E5-2690 CRS 6.5 4.5 6.2 GB/s 1
: CRS 1.3 1.6 1.8
Tesla K20c 144
(Kepler) ELL-R 22.5 14.0 13.0 ceis | 37
i 15.7 19.9
R
Best data layout: 1 Kepler / 1 Intel Xeon processor: ~3.2-3.4 J
(As suggested by STREAM bandwidth)
12/14/2012 Mysteries of Application Performance 19

A few comments on programming language/style I_ r E —

Don’t be religious about programming style!
IF you program C++ like Fortran - Fortran performance
BUT do students still know Fortran?!

Adopt programming style to problem and hardware (if
performance is critical for you)

Performance for a complex problem on a complex
hardware is NOT for free

Conservation law of hardware efficient programming
PERFORMANCE * FLEXIBILITY = constant

12/14/2012 Mysteries of Application Performance 20

Mystery

Even with simple loop structures
the compiler fails to parallelize / vectorize

Intel compiler
Prototype scenario: 3D stencil / Jacobi

Compiler based parallelization for 3D stencil r r] —

“Jacobi iteration”
Finite difference discretization of Laplace equation in 3D
Use Jacobi method to solve the corresponding linear system of equations
Prototype for many regular stencil update scheme, e.g. in Multigrid schmes

void jacobi_full(double *Y, const double *X, Int size) {
int 1,j,k,ofs;
#pragma omp parallel for private(ofs,1,j,k)
for(1=1; i1<size-1; ++1) {
for(J=1; j<size-1; ++j) {
ofs = 1*size*size + J*size;
for(k=1; k<size-1; ++k) {
Y[ofs+tk] = oos*(X[ofs+tk+1l]+X[ofs+tk-1]+X[ofs+k-size]+
X[ofs+k+size]+X[ofst+tk-size*size]+X[ofstk+size*size]);

333}

No data dependencies > easy to parallelize
Is the compiler clever enough?!

12/14/2012 Mysteries of Application Performance 22

Compiler based automatic parallelization r r E —

Compiler: Intel C-compiler (Version 13.0.1.117 Build 20121010)

15t try:
>icc -O3 -xHOST -par-report2 -parallel -c j3d_c.c
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: existence of parallel dependence.

Pointer aliasing in C - Compiler assumes pot. dependency: Y& X
2nd try:

>icc -O3 -xHOST -par-report2 -parallel —fno-alias -c j3d_c.c

j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.

j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: insufficient computational work.

3rd try:
>icc -O3 -xHOST -par-report2 -parallel —fno-alias —par-threshold0 -c j3d_c.c

j3d_c.c(37): (col. 7) remark: LOOP WAS AUTO-PARALLELIZED.

12/14/2012 Mysteries of Application Performance 23

Compiler based (automatic) parallelization =

Intel Xeon E5-2690 (8 cores, 2.9 GHz) e e e o :
Testcase: 2403 I I N A I I o
Serial performance: 521 MLUP/s (=3.1 GFI/s) | R -

Parallel performance (higher is better) [Memory J
_threads | Compiler | OpenMP |
1 312 519
2 195 902
4 181 1353
6 156 1390
8 151 1377

Compiler version suffers from overhead of inner loop parallelization!

12/14/2012 Mysteries of Application Performance 24

Support our compiler! rrEE

Recognizing data parallel structures is essential for automatic
parallelization / vectorization

Compiler has a limited view of the code

Do not completely rely on the compiler (or other software layer)
support it:
Plain programming — do not hide information!

Use compiler directives / pragmas / to support vectorization and
parallelization

Inlining often helps

Even with highest optimization level your code should produce correct
results

12/14/2012 Mysteries of Application Performance 25

Mystery
Performance is a black box — take what you get

Prototype scenario: Jacobi

Performance is a black box r) —

Equivalent Fortran version " ﬁ%
1SOMP PARALLEL DO —
dO k = 1 » N [Memory }

do jJ =1, N

do1 =1 , N

y(i,j.k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
' x(i,+1,k)+ x(i,j,k-1)+ x(i,J.k+1))

enddo
enddo
enddo

BTW:
Compiler parallelizes outer loop in Fortran

Performance of Fortran is the same as OpenMP C-Code (assuming
comparable compiler switches)

What is the maximum performance on Intel Xeon E5-2690 (8 cores,
2.9 GHz)?

12/14/2012 Mysteries of Application Performance 27

Performance is a black box

150MP PARALLEL
do k

Assumption: Main memory band
STREAM bandwidth~ 36 GB/s

DO

Requires “Write Allocate”

\ Elements have been loaded in
previous (i,j,k) iterations

idth limits Jacobi performance

How many data must be transferred between processor and main

memory for a single Lattice Update (assume DP)
(1 STORE + 1 LOAD) * 8 B
1 LOAD * 8B

y(i,J.Kk):

x(1,],k+1)

- 16 B/LUP
- 8 B/LUP

- Maximum Performance: (36 GB/s) / (24 B/LUP) = 1500 MLUP/s

12/14/2012

Mysteries of Application Performance

28

Mystery
Sometimes it is so easy to scale on multicore chips

Prototype scenario: Jacobi

Multicore scalability mystery: Jacobi iteration I' r “‘m—

1$0MP PARALLEL DO

do k =1, N
doj=1,N;doi=1,N
y(i,j.k)=b*(x@(i-1,j,.k)+ x(i+l,j,k)+ x(i,j-1,k)+
) x(i,J+1,K)+ x(i,§,k-1)+ x(i,J,k+1))
enddo; enddo [' ' ' ' ' ' '
enddo gk _
: 3D Stencil Update
7H ("Tacobi") r
Changing only a few ol)
letters makes this code o T =8 Version 1
scalable on a 8-core chip = °[|®=® Version?2 Prepared for 3
%4__ the highly .
ﬁg 51 . parzzllel er.a! |]
L ifort —03 -axAvX]
[Memory] I 7
| | | | | | | |

ffcores

12/14/2012 Mysteries of Application Performance 30

Multicore scalability mystery: Jacobi iteration I_ r “‘m—

1$OMP PARALLEL DO
do k 1 , Nk
i

L= K+ X(IHL K+ XCEL§-1, k)
X(i 1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo; enddo <1500:) i I i I | | | |

enddo -

! A
Simple performance model: i == Vorsioh 1
— = crsiopn
o 24 Byte/ LUP. 2 1000 o Versioh 2| |
« Socket Bandwidth: =]
36 GB/s = i 3D Stencil Update
- Max. 1500 MLUP/s 5 I ("Jacobi")
=
= i |
"""" """"" g ‘% 500 | .Single.core/socket efficiency -
i § ~ b is key issue! Y

#cores

12/14/2012 Mysteries of Application Performance 31

Summary: Performance and Scalability r r —

When optimizing / parallelizing performance critical code (even
simple) performance models help a lot

Having a good estimate of the optimal runtime of a code is the first
step of any optimization/parallelization attempt

Achieving scalability is easy > Compare with a bad baseline
(“Slow computing”)

Single core/thread/process performance should be the first target

12/14/2012 Mysteries of Application Performance 32

Mystery

Erratic performance numbers on multi-processor
nodes (ccNUMA)

Prototype scenario: STREAM

From UMA to ccNUMA I_I__I_
Basic architecture of commodity compute cluster nodes

Yesterday (2006): Dual-socket Intel “Core2” node:

P P

L1D L1D

P|P

L1D L1D

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

R

——

Cache-coherent Non-Uniform Memory
e e lleleielel Architecture (ccNUMA)

[Wemery eriacs e wemeny merisss ;|17 / OP| provide scalable bandwidth at the
price of ccNUMA architectures: Where
[Memory] \ Memary does my data finally end up?

On AMD it is even more complicated - ccNUMA within a socket!

12/14/2012 Mysteries of Application Performance 34

ccNUMA performance problems I— I— =1
Affinity matters

ccNUMA:
Whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)

How do we make sure that memory access is always as "local”
and "distributed" as possible?

Page placement is implemented in units of OS pages (often 4kB, possibly
more)

Be aware that you are not the only one using memory (even on a dedicated
node)

12/14/2012 Mysteries of Application Performance 35

STREAM benchmark on 2x6-core Intel Westmere I— — —
Anarchy vs. thread pinning

__

1 1 | 1
45000 ! ! : :
I PP PIIPI[P|[P| [P|[P|P|PI|P|P]|
40000 _|\[tp |[to |[o |[1o |[Lp |[LD |s {1t |[1o |[1o |[Lo |[Lip || LD |a
i Y T . | 1| L2 L2 L2 L2 L2 L2 : 1| L2 L2 L2 L2 L2 L2 :
35000 [1 K L K :
il % ll :| Memory Interface H Memory Interface ||
e o e e] I N 1 e e e e e I I 1
‘v’ 30000 Pl
M I o b % Z.
=, 25000 — T
= [Memory J (Memory J
5. I 1 L 3
% P, __ L 7 45000 L T T 1T T 1T T T T T ']] I T
=
8 15000 - T g = - -]
o 40000 — F - - -_ _ —
10000 No pinning: Strong B % @ B f % = = .
- performance fluctuations (2x)! 33000 = T % n
5000 — B % %]
5 30000 — —
0 1 | 1 | 1 | 1 ‘ 1 | 1 1 | 1 1 | 1 | 1 | — =

| |
0 2 4 6 8 10 12 14 16 18 20 22
number of threads

25000 — % —
20000 — T —

15000 — —
Pinning threads on ccNUMA is a must: -
10000 — —

Eliminating performance variation i Pinning (ph¥5'°a| cores first,]
5000 |~ alternating sockets) -

bandwidth [MB/s]

) A T T T v By
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Avoiding resource contention umber of threads

Making use of architectural features

12/14/2012 Mysteries of Application Performance 36

Erratic performance on ccNUMA nodes rr n—

Thread pinning is essential!

Data distribution within OpenMP codes must be correctly done by
programmer -> first touch

Even MPI applications suffer in some cases from data locality
issues:

OS allocates (file) buffers = Your MPI performance may depend on the
type of the previous jobs!

Only system administrator can release the OS buffer at OS level

User may use a sweeper code.... (Touch all available memory in the node
once then OS releases the buffer)

12/14/2012 Mysteries of Application Performance 37

LIKWID: Lightweight Performance Tools for —
efficiently using and programming multicores rri

Lightweight command line tools for Linux

Help to face the challenges without getting in the way

Focus on X86 architecture

Philosophy:
Simple
Efficient

Portable
Extensible

Get around some
some mysteries
with LIKWID, e.g.

pinning

Open source project (GPL v2):
http://code.google.com/p/likwid/

12/14/2012 Mysteries of Application Performance 38

THANK YOU.

12/14/2012 Mysteries of Application Performance

Jan Treibig
Johannes Habich
Moritz Kreutzer
Markus Wittmann
Thomas Zeiser
Michael Meier
Faisal Shahzad
Gerald Schubert

K ONW 1L H~HR

R

4
‘OMI4papps
HQS@HPC II

Bundesministerium
flir Bildung
und Forschung

hpcADD
SKALB

39

References [m'—

Books:

G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and
Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:

G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties
of modern multicore chips via simple machine models. Accepted. Preprint: arXiv:1208.2908

J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern
multicore processors: Best practices for performance engineering. Workshop on Productivity
and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island,
Greece. Preprint: arXiv:1206.3738

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse
Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable
Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),

DOI: 10.1109/IPDPSW.2012.211

J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI
10.1016/j.j0ocs.2011.01.010

BLOG: http://blogs.fau.de/hager/

12/14/2012 Mysteries of Application Performance 40

References [m'—

Papers continued:

G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking
for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC
20009.

DOI: 10.1109/COMPSAC.2009.82

M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters. Parallel
Processing Letters 20 (4), 359-376 (2010).

DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.
DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-based systems.
Parallel Processing Letters 21(3), 339-358 (2011).

DOI: 10.1142/S0129626411000254

J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).
DOI 10.1016/}.jocs.2011.01.010

12/14/2012 Mysteries of Application Performance 41

£
©
-
(@)
3
o
=
o
L)
11]
=
-
D
X
o
—
2
Q
Q
X
<
=
>
<

=
]
L5
=
]
2
2
&
L5
=
[
0
&
[=]
=1

Architecture

= 7.1B Transistors
= 15 “SMX” units

= 192 (SP) “cores” each
= >1 TFLOP DP peak
= 1.5 MB L2 Cache

= 384-bit GDDRS5
= PCI Express Gen3

= 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

Intel Xeon Phi block diagram

Architecture
3B Transistors
60+ cores

512 bit SIMD
=1 TFLOP DP

peak

0.5 MB
L2/core

GDDRS5

2:1 SP:DP
performance V¥

T1|T2|T3|T4

VU

P

32k L1D

512k L2

64 byte/cy

T1|72[Ts|14
VU
P

32k L1D
512k L2

L
L

T1|T‘2|T3|T4 T1|T2|T3|T4 T1|T2|T3|T4 o
(S]
VU = VU VU =
P "8‘ P oo P "8‘
32k L1D 0 32k L1D 32k L1D o
512k L2 512k L2 512k L2
L L L L L
L L L L L
= = = <
B o
T1|T2|T3|T4 T1|T2|T3|T4 T1|T2|T3|T4
(&) (&)
VU = VU VU =
P "8‘ P oo P "8‘
32k L1D I5) 32k L1D 32k L1D o
512k L2 512k L2 512k L2
- i Py Py Py
L L L L L
™ o

