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As time goes by….

MediaMarkt 2003

MediaMarkt 2011
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Exponential growth of x86-CPU clock speed for 15+ years
Since 2004 the 4 GHz barrier limits x86 clock speed 
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The end of the clock speed race 

Fastest Intel x86 clock speed
Higher clock speeds require special efforts
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 Technology trends and state-of-the-art multi-/manycore processors

 Mysteries

 The programming language is critical for performance

 Even with simple loop structures the compiler fails to parallelize / vectorize

 Performance is a black box – take what you get

 Sometimes it is so easy to scale on multicore chips 

 Erratic performance numbers on multi-processor nodes (NUMA)
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Technology trend: Moore’s law continues…

Electronics Magazine, April 1965:  
The complexity for minimum component costs has 
increased at a rate of roughly a factor of two per year… 
Certainly over the short 
term this rate can be expected 
to continue, if not to increase. 

NVIDIA Kepler: ~7.1 billion
Intel SNB EP: ~2.2 billion

Intel Corp

www.wikipedia.de
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 Moore’s law   run smaller transistors faster
 Faster clock speed   Higher Throughput (Ops/s) for free

Technology trend: … but the free lunch is over

Intel x86 processor
clock speed

Single core: Instruction 
level parallelism:
• Superscalarity

• Single Instruction Multiple
Data (SIMD)  SSE / AVX

Investing the 
transistor budget:
• Multi-Core/Threading

• Complex on chip caches 

• New on-chip functionalities
(GPU, PCIe,…)
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The physical constraint: Power consumption

 Power consumption (PT) per transistor: PT ~ VC * f 
 Supply voltage approaches a lower limit: VC ~ 1 V
 Power consumption / chip: P ~ #Transistors * PT

 Max. P approaches economical limit: Pmax ~ 80 W,…,130 W

P5 / 80586 (1993) Pentium3 (1999) Pentium4 (2003) Core i7–3960X (2012)

66 MHz 600 MHz 2800 MHz 3300 MHz

16 W @ VC = 5 V 23 W @ VC = 2 V 68 W @ VC = 1.5 V 130 W @ VC = 1.3

800 nm / 3 M 250 nm / 28 M 130 nm / 55 M 32 nm / 2200 M

Structure Size / 
#Transistors

Pmax / 
Core supply voltage

Hexa‐Core

2

Be prepared for more cores with less complexity and slower clock!
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There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * 

ncore number of cores: 8

F FP instructions per cycle: 2 
(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp) 
(256 Bit SIMD registers – “AVX”)

 Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon
“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non‐SIMD code 

TOP500 rank 1 (1995)
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Highly parallel on-chip architectures: Accelerators

 Intel Xeon/Phi
 60+ IA32 cores each with 512 Bit SIMD 

FMA unit  960 “SIMD SP tracks”

 Clock Speed: ~1000 MHz
 Transistor count: ~3 B (22nm)
 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s
 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 100-200
 Programming: Fortan/C/C++ +OpenMP + 

vectorization

 TOP7: “Stampede” at Texas Center 
for Advanced Computing

• NVIDIA Kepler (GK110)
– 15 SMX units each with 192 “SP 

cores”  2880 “SP cores” in total

– Clock Speed: ~700 MHz
– Transistor count: 7.1 B (28nm)
– Power consumption: ~250 W

– Peak Performance (DP): ~ 1 TF/s
– Memory BW:  ~ 250 GB/s (GDDR5)

– Threads to execute: 10.000+
– Programming: CUDA, OpenCL, 

(OpenACC)

– TOP1: “Titan” at Oak Ridge 
National Laboratory

TOP500
rankings 
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Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU 
light speed estimate:

1. Compute bound (DP): 2x-4x 
Compute bound (SP): 5-10x

2. Memory Bandwidth:   2x-4x

Intel Core i7 –3960x 
(“Sandy Bridge”)

Intel Xeon E5-2680 DP 
node (“Sandy Bridge”)

NVIDIA K20 
(“Kepler”)

Cores@Clock 6 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2496 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <6 <16 >8000?
Total performance+ 315 GFlop/s 691 GFlop/s 3,500 GFlop/s

Stream BW ~40 GB/s 2 x ~40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 2.2 Billion* / 130 W 2 x (2.27 Billion/130W) 7.1 Billion/250W
* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device
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Trends to remember

 “Few” cores@high clock speeds 


Massive number of 
execution units@low clock speed

 Complex topology issues within compute node
 Simultaneous Multi-Threading
 Shared vs. dedicated caches
 ccNUMA
 Device vs. host memory 
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GPU #1

GPU #2
PCIe link

Other I/O



Mystery

The programming language is critical for 
performance

C / C++ / FORTRAN,…, Java or OpenCL
Application scenario: sparse matrix-vector multiply 



13

Sparse matrix-vector multiply (spMVM)

 Key ingredient in sparse solvers for Finite-Element-Method or in 
Quantum Physics/Chemistry

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors 
with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case: 
some indirect 
addressing 
required!
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…

CRS matrix storage scheme

column index
ro

w
 in

de
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index 
of each nonzero (length Nnz)

 row_ptr[] stores the starting index 
of each new row in val[] (length: 
Nr)
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Impact of programming language/style
A representative example ?! 

 Sparse matrix-vector multiplication: y = y + M*x

 The classical Fortran/C approach: 
Compressed Row Storage (CRS) for matrix M

Sparse MVM code snippet:

for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];

}}}
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Impact of programming language/style
A representative example?!

 spMVM (within  Finite-Element Method): y = y + M*x

 The object oriented C++ approach for FEM: 
Consider each row of M as an object, e.g. the stencil of a node in 
FEM  Matrix M is a vector of “stencils”

for(i=0; i < number_of_unknowns; ++i){
for(j=0; j < stencil_array[i].m_row_stencil_length;++j){

y.m_vektor[i] = y.m_vektor[i] + 
stencil_array[i].m_row_stencil[j] * 
x.m_vektor[stencil_array[i].m_row_position[j]];

}}}

//Class Stencil
class Stencil{ int m_row_stencil_length; double *m_row_stencil; 
int *m_row_position; }

12/14/2012 Mysteries of Application Performance



17

 FEM-oriented spMVM: y = y + M*x

 Problem: FEM on semi structured grid with 55056 vertices

 Serial Performance of
simple CG solver
including spMVM

 Testmachine:
Intel Core2 2 .26GHz
(Penryn)

 Object orientation may be orthognal to performance

Impact of programming language/style
A representative example?!
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Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

GPU #1

GPU #2

#pragma acc for
for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];}}

size_t i = get_global_id(0); 
if (i < number_of_unknowns) { 

for(int j=row[i]; j<row[i+1]; ++j) { 

y[i] = y[i] + entry[j]*= x[column[j]];}} 
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Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

 All kernels written in OpenCL

 Data format is the key to
performance!

 Even with OpenCL: 
CPU and GPU code branch

 Best data layout: 1 Kepler / 1 Intel Xeon processor: ~3.2-3.4
(As suggested by STREAM bandwidth)

spMVM
format dlr1 rrze3 RM07R copy

BW
GPU/
CPU

Intel
Xeon E5-2690 CRS 6.5 4.5 6.2 39 

GB/s 1

Tesla K20c 
(Kepler)

CRS 1.3 1.6 1.8
144 
GB/s 3.7ELL-R 22.5 14.0 13.0

Best 22.6 15.7 19.9
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A few comments on programming language/style

 Don’t be religious about programming style!
 IF you program C++ like Fortran  Fortran performance
 BUT do students still know Fortran?!

 Adopt programming style to problem and hardware (if 
performance is critical for you)
 Performance for a complex problem on a complex 

hardware is NOT for free

 Conservation law of hardware efficient programming
PERFORMANCE * FLEXIBILITY = constant
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Mystery

Even with simple loop structures 
the compiler fails to parallelize / vectorize

Intel compiler
Prototype scenario: 3D stencil / Jacobi
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Compiler based parallelization for 3D stencil 

 “Jacobi iteration” 
 Finite difference discretization of Laplace equation in 3D
 Use Jacobi method to solve the corresponding linear system of equations
 Prototype for many regular stencil update scheme, e.g. in Multigrid schmes

 No data dependencies  easy to parallelize
 Is the compiler clever enough?!

void jacobi_full( double *Y, const double *X, int size) {
int i,j,k,ofs;

#pragma omp parallel for private(ofs,i,j,k)
for(i=1; i<size-1; ++i) {
for(j=1; j<size-1; ++j) {
ofs = i*size*size + j*size;
for(k=1; k<size-1; ++k) {
Y[ofs+k] = oos*(X[ofs+k+1]+X[ofs+k-1]+X[ofs+k-size]+

X[ofs+k+size]+X[ofs+k-size*size]+X[ofs+k+size*size]);

}}}}
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Compiler based automatic parallelization

 Compiler: Intel C-compiler (Version 13.0.1.117 Build 20121010)
 1st try:

 Pointer aliasing in C  Compiler assumes pot. dependency: YX
 2nd try:  

 3rd try:

>icc -O3 -xHOST -par-report2  -parallel -c j3d_c.c
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: existence of parallel dependence.

>icc -O3 -xHOST -par-report2  -parallel –fno-alias -c j3d_c.c
…
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: insufficient computational work.

>icc -O3 -xHOST -par-report2  -parallel –fno-alias –par-threshold0 -c j3d_c.c
…
j3d_c.c(37): (col. 7) remark: LOOP WAS AUTO-PARALLELIZED.
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Compiler based (automatic) parallelization

 Intel Xeon E5-2690 (8 cores, 2.9 GHz)
 Testcase: 2403

 Serial performance: 521 MLUP/s (=3.1 GF/s)

 Parallel performance (higher is better)

 Compiler version suffers from overhead of inner loop parallelization!

threads Compiler OpenMP
1 312 519
2 195 902
4 181 1353
6 156 1390
8 151 1377
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Support our compiler!

 Recognizing data parallel structures is essential for automatic 
parallelization / vectorization

 Compiler has a limited view of the code 

 Do not completely rely on the compiler (or other software layer) 
support it:
 Plain programming – do not hide information!
 Use compiler directives / pragmas / …. to support vectorization and 

parallelization
 Inlining often helps
 Even with highest optimization level your code should produce correct 

results
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Mystery

Performance is a black box – take what you get

Prototype scenario: Jacobi
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 Equivalent Fortran version

 BTW: 
 Compiler parallelizes outer loop in Fortran
 Performance of Fortran is the same as OpenMP C-Code (assuming 

comparable compiler switches)

 What is the maximum performance on Intel Xeon E5-2690 (8 cores, 
2.9 GHz)?

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo
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 Assumption: Main memory bandwidth limits Jacobi performance
 STREAM bandwidth~ 36 GB/s
 How many data must be transferred between processor and main 

memory for a single Lattice Update (assume DP)
 y(i,j,k): (1 STORE + 1 LOAD) * 8 B  16 B/LUP
 x(i,j,k+1) 1 LOAD * 8B  8 B/LUP

 Maximum Performance: (36 GB/s) / (24 B/LUP) = 1500 MLUP/s

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo

Requires “Write Allocate”

Elements have been loaded in 
previous (i,j,k) iterations
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Mystery

Sometimes it is so easy to scale on multicore chips 

Prototype scenario: Jacobi
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Multicore scalability mystery: Jacobi iteration 

Prepared for 
the highly 
parallel era!

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N; do i = 1 , N

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Changing only a few 
letters makes this code 
scalable on a 8-core chip

ifort –O3 -axAVX
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Multicore scalability mystery: Jacobi iteration

!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Single core/socket efficiency 
is key issue!

Simple performance model:
• 24 Byte / LUP
• Socket Bandwidth: 

36 GB/s
 Max. 1500 MLUP/s
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Summary: Performance and Scalability

 When optimizing / parallelizing performance critical code (even 
simple) performance models help a lot

 Having a good estimate of the optimal runtime of a code is the first 
step of any optimization/parallelization attempt 

 Achieving scalability is easy  Compare with a bad baseline 
(“Slow computing”)

 Single core/thread/process performance should be the first target
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Mystery

Erratic performance numbers on multi-processor 
nodes (ccNUMA)

Prototype scenario: STREAM



34

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA 
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory 
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the 
price of ccNUMA architectures: Where 
does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!
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ccNUMA performance problems
Affinity matters 
 ccNUMA:

 Whole memory is transparently accessible by all processors
 but physically distributed
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local" 
and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly 
more)
 Be aware that you are not the only one using memory (even on a dedicated 

node)

C C C C

M M

C C C C

M M
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STREAM benchmark on 2x6-core Intel Westmere
Anarchy vs. thread pinning

No pinning: Strong 
performance fluctuations (2x)!

Pinning (physical cores first, 
alternating sockets)

Pinning threads on ccNUMA is a must:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention
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Erratic performance on ccNUMA nodes

 Thread pinning is essential!

 Data distribution within OpenMP codes must be correctly done by 
programmer  first touch

 Even MPI applications suffer in some cases from data locality 
issues:
 OS allocates (file) buffers  Your MPI performance may depend on the 

type of the previous jobs!
 Only system administrator can release the OS buffer at OS level
 User may use a sweeper code…. (Touch all available memory in the node 

once then OS releases the buffer)
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LIKWID: Lightweight Performance Tools for 
efficiently using and programming multicores

 Lightweight  command line tools for Linux
 Help to face the challenges without getting in the way
 Focus on X86 architecture
 Philosophy:

 Simple
 Efficient
 Portable
 Extensible

 Get around some
some mysteries
with LIKWID, e.g.
pinning

Open source project (GPL v2):
http://code.google.com/p/likwid/
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THANK YOU.

Jan Treibig
Johannes Habich

Moritz Kreutzer
Markus Wittmann

Thomas Zeiser
Michael Meier

Faisal Shahzad
Gerald Schubert

OMI4papps
HQS@HPC II 

hpcADD
SKALB

12/14/2012 Mysteries of Application Performance



40

References

Books:
 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and 

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:
 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties 

of modern multicore chips via simple machine models. Accepted. Preprint: arXiv:1208.2908
 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern 

multicore processors: Best practices for performance engineering. Workshop on Productivity 
and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island, 
Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse 
Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable 
Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12), 
DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for 
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI 
10.1016/j.jocs.2011.01.010

BLOG: http://blogs.fau.de/hager/

12/14/2012 Mysteries of Application Performance



41

References
Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking
for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC 
2009. 
DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel 
temporal blocking of stencil codes on multicore processors and clusters. Parallel 
Processing Letters 20 (4), 359-376 (2010). 
DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool 
suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop 
on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010. 
DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector 
multiplication with explicit communication overlap on current multicore-based systems. 
Parallel Processing Letters 21(3), 339-358 (2011). 
DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for 
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). 
DOI 10.1016/j.jocs.2011.01.010

12/14/2012 Mysteries of Application Performance



NVIDIA Kepler GK110 Block Diagram

Architecture
 7.1B Transistors
 15 “SMX” units

 192 (SP) “cores” each
 > 1 TFLOP DP peak
 1.5 MB L2 Cache
 384-bit GDDR5
 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.



Intel Xeon Phi block diagram

Architecture
 3B Transistors
 60+ cores
 512 bit SIMD
 ≈ 1 TFLOP DP 

peak
 0.5 MB 

L2/core
 GDDR5

 2:1 SP:DP 
performance

64 byte/cy


