
Unveiling some Mysteries
of Application Performance
on Multi-/Manycore Processors

Gerhard Wellein, Georg Hager
Erlangen Regional Computing Center & Dept. of Computer Science
Friedrich-Alexander-University Erlangen-Nuremberg

12/14/2012 Mysteries of Application Performance 1

As time goes by….

MediaMarkt 2003

MediaMarkt 2011
12/14/2012 Mysteries of Application Performance 2

Exponential growth of x86-CPU clock speed for 15+ years
Since 2004 the 4 GHz barrier limits x86 clock speed

0,1

10

1000

Fr
eq

ue
nc

y
[M

Hz
]

The end of the clock speed race

Fastest Intel x86 clock speed
Higher clock speeds require special efforts

12/14/2012 Mysteries of Application Performance 3

 Technology trends and state-of-the-art multi-/manycore processors

 Mysteries

 The programming language is critical for performance

 Even with simple loop structures the compiler fails to parallelize / vectorize

 Performance is a black box – take what you get

 Sometimes it is so easy to scale on multicore chips

 Erratic performance numbers on multi-processor nodes (NUMA)

12/14/2012 4Mysteries of Application Performance

Technology trend: Moore’s law continues…

Electronics Magazine, April 1965:
The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year…
Certainly over the short
term this rate can be expected
to continue, if not to increase.

NVIDIA Kepler: ~7.1 billion
Intel SNB EP: ~2.2 billion

Intel Corp

www.wikipedia.de

12/14/2012 5Mysteries of Application Performance

Frequency [MHz]

0,1

1

10

100

1000

10000

19
71

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

20
09

Year

 Moore’s law run smaller transistors faster
 Faster clock speed Higher Throughput (Ops/s) for free

Technology trend: … but the free lunch is over

Intel x86 processor
clock speed

Single core: Instruction
level parallelism:
• Superscalarity

• Single Instruction Multiple
Data (SIMD) SSE / AVX

Investing the
transistor budget:
• Multi-Core/Threading

• Complex on chip caches

• New on-chip functionalities
(GPU, PCIe,…)

12/14/2012 6Mysteries of Application Performance

The physical constraint: Power consumption

 Power consumption (PT) per transistor: PT ~ VC * f
 Supply voltage approaches a lower limit: VC ~ 1 V
 Power consumption / chip: P ~ #Transistors * PT

 Max. P approaches economical limit: Pmax ~ 80 W,…,130 W

P5 / 80586 (1993) Pentium3 (1999) Pentium4 (2003) Core i7–3960X (2012)

66 MHz 600 MHz 2800 MHz 3300 MHz

16 W @ VC = 5 V 23 W @ VC = 2 V 68 W @ VC = 1.5 V 130 W @ VC = 1.3

800 nm / 3 M 250 nm / 28 M 130 nm / 55 M 32 nm / 2200 M

Structure Size /
#Transistors

Pmax /
Core supply voltage

Hexa‐Core

2

Be prepared for more cores with less complexity and slower clock!

12/14/2012 7Mysteries of Application Performance

There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S *

ncore number of cores: 8

F FP instructions per cycle: 2
(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)
(256 Bit SIMD registers – “AVX”)

 Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

Intel Xeon
“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5 GF/s (dp) for serial, non‐SIMD code

TOP500 rank 1 (1995)

12/14/2012 8Mysteries of Application Performance

Highly parallel on-chip architectures: Accelerators

 Intel Xeon/Phi
 60+ IA32 cores each with 512 Bit SIMD

FMA unit 960 “SIMD SP tracks”

 Clock Speed: ~1000 MHz
 Transistor count: ~3 B (22nm)
 Power consumption: ~250 W

 Peak Performance (DP): ~ 1 TF/s
 Memory BW: ~250 GB/s (GDDR5)

 Threads to execute: 100-200
 Programming: Fortan/C/C++ +OpenMP +

vectorization

 TOP7: “Stampede” at Texas Center
for Advanced Computing

• NVIDIA Kepler (GK110)
– 15 SMX units each with 192 “SP

cores” 2880 “SP cores” in total

– Clock Speed: ~700 MHz
– Transistor count: 7.1 B (28nm)
– Power consumption: ~250 W

– Peak Performance (DP): ~ 1 TF/s
– Memory BW: ~ 250 GB/s (GDDR5)

– Threads to execute: 10.000+
– Programming: CUDA, OpenCL,

(OpenACC)

– TOP1: “Titan” at Oak Ridge
National Laboratory

TOP500
rankings

Mysteries of Application Performance 912/14/2012

10

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU
light speed estimate:

1. Compute bound (DP): 2x-4x
Compute bound (SP): 5-10x

2. Memory Bandwidth: 2x-4x

Intel Core i7 –3960x
(“Sandy Bridge”)

Intel Xeon E5-2680 DP
node (“Sandy Bridge”)

NVIDIA K20
(“Kepler”)

Cores@Clock 6 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2496 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s
Threads@STREAM <6 <16 >8000?
Total performance+ 315 GFlop/s 691 GFlop/s 3,500 GFlop/s

Stream BW ~40 GB/s 2 x ~40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 2.2 Billion* / 130 W 2 x (2.27 Billion/130W) 7.1 Billion/250W
* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device

12/14/2012 Mysteries of Application Performance

Trends to remember

 “Few” cores@high clock speeds

Massive number of
execution units@low clock speed

 Complex topology issues within compute node
 Simultaneous Multi-Threading
 Shared vs. dedicated caches
 ccNUMA
 Device vs. host memory

12/14/2012 Mysteries of Application Performance 11

GPU #1

GPU #2
PCIe link

Other I/O

Mystery

The programming language is critical for
performance

C / C++ / FORTRAN,…, Java or OpenCL
Application scenario: sparse matrix-vector multiply

13

Sparse matrix-vector multiply (spMVM)

 Key ingredient in sparse solvers for Finite-Element-Method or in
Quantum Physics/Chemistry

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors
with Nr (number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General case:
some indirect
addressing
required!

12/14/2012 Mysteries of Application Performance

14

…

CRS matrix storage scheme

column index
ro

w
 in

de
x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length:
Nr)

12/14/2012 Mysteries of Application Performance

15

Impact of programming language/style
A representative example ?!

 Sparse matrix-vector multiplication: y = y + M*x

 The classical Fortran/C approach:
Compressed Row Storage (CRS) for matrix M

Sparse MVM code snippet:

for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];

}}}

12/14/2012 Mysteries of Application Performance

16

Impact of programming language/style
A representative example?!

 spMVM (within Finite-Element Method): y = y + M*x

 The object oriented C++ approach for FEM:
Consider each row of M as an object, e.g. the stencil of a node in
FEM Matrix M is a vector of “stencils”

for(i=0; i < number_of_unknowns; ++i){
for(j=0; j < stencil_array[i].m_row_stencil_length;++j){

y.m_vektor[i] = y.m_vektor[i] +
stencil_array[i].m_row_stencil[j] *
x.m_vektor[stencil_array[i].m_row_position[j]];

}}}

//Class Stencil
class Stencil{ int m_row_stencil_length; double *m_row_stencil;
int *m_row_position; }

12/14/2012 Mysteries of Application Performance

17

 FEM-oriented spMVM: y = y + M*x

 Problem: FEM on semi structured grid with 55056 vertices

 Serial Performance of
simple CG solver
including spMVM

 Testmachine:
Intel Core2 2 .26GHz
(Penryn)

 Object orientation may be orthognal to performance

Impact of programming language/style
A representative example?!

82

610

0

100

200

300

400

500

600

700

M
Fl

op
/s

Object Oriented Classical CRS

8 X

12/14/2012 Mysteries of Application Performance

18

Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

GPU #1

GPU #2

#pragma acc for
for(i = 0; i< number_of_unknowns; ++i){

for(j = row(i); i < row(i+1);++j){

y[i] =y[i] +entry[j] *x[column[j]];}}

size_t i = get_global_id(0);
if (i < number_of_unknowns) {

for(int j=row[i]; j<row[i+1]; ++j) {

y[i] = y[i] + entry[j]*= x[column[j]];}}

12/14/2012 Mysteries of Application Performance

19

Programming for heterogeneous systems:
A unified code for CPU and Accelerators?

 All kernels written in OpenCL

 Data format is the key to
performance!

 Even with OpenCL:
CPU and GPU code branch

 Best data layout: 1 Kepler / 1 Intel Xeon processor: ~3.2-3.4
(As suggested by STREAM bandwidth)

spMVM
format dlr1 rrze3 RM07R copy

BW
GPU/
CPU

Intel
Xeon E5-2690 CRS 6.5 4.5 6.2 39

GB/s 1

Tesla K20c
(Kepler)

CRS 1.3 1.6 1.8
144
GB/s 3.7ELL-R 22.5 14.0 13.0

Best 22.6 15.7 19.9

12/14/2012 Mysteries of Application Performance

20

A few comments on programming language/style

 Don’t be religious about programming style!
 IF you program C++ like Fortran Fortran performance
 BUT do students still know Fortran?!

 Adopt programming style to problem and hardware (if
performance is critical for you)
 Performance for a complex problem on a complex

hardware is NOT for free

 Conservation law of hardware efficient programming
PERFORMANCE * FLEXIBILITY = constant

12/14/2012 Mysteries of Application Performance

Mystery

Even with simple loop structures
the compiler fails to parallelize / vectorize

Intel compiler
Prototype scenario: 3D stencil / Jacobi

22

Compiler based parallelization for 3D stencil

 “Jacobi iteration”
 Finite difference discretization of Laplace equation in 3D
 Use Jacobi method to solve the corresponding linear system of equations
 Prototype for many regular stencil update scheme, e.g. in Multigrid schmes

 No data dependencies easy to parallelize
 Is the compiler clever enough?!

void jacobi_full(double *Y, const double *X, int size) {
int i,j,k,ofs;

#pragma omp parallel for private(ofs,i,j,k)
for(i=1; i<size-1; ++i) {
for(j=1; j<size-1; ++j) {
ofs = i*size*size + j*size;
for(k=1; k<size-1; ++k) {
Y[ofs+k] = oos*(X[ofs+k+1]+X[ofs+k-1]+X[ofs+k-size]+

X[ofs+k+size]+X[ofs+k-size*size]+X[ofs+k+size*size]);

}}}}

12/14/2012 Mysteries of Application Performance

23

Compiler based automatic parallelization

 Compiler: Intel C-compiler (Version 13.0.1.117 Build 20121010)
 1st try:

 Pointer aliasing in C Compiler assumes pot. dependency: YX
 2nd try:

 3rd try:

>icc -O3 -xHOST -par-report2 -parallel -c j3d_c.c
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: existence of parallel dependence.

>icc -O3 -xHOST -par-report2 -parallel –fno-alias -c j3d_c.c
…
j3d_c.c(34): (col. 5) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(35): (col. 7) remark: loop was not parallelized: existence of parallel dependence.
j3d_c.c(37): (col. 2) remark: loop was not parallelized: insufficient computational work.

>icc -O3 -xHOST -par-report2 -parallel –fno-alias –par-threshold0 -c j3d_c.c
…
j3d_c.c(37): (col. 7) remark: LOOP WAS AUTO-PARALLELIZED.

12/14/2012 Mysteries of Application Performance

24

Compiler based (automatic) parallelization

 Intel Xeon E5-2690 (8 cores, 2.9 GHz)
 Testcase: 2403

 Serial performance: 521 MLUP/s (=3.1 GF/s)

 Parallel performance (higher is better)

 Compiler version suffers from overhead of inner loop parallelization!

threads Compiler OpenMP
1 312 519
2 195 902
4 181 1353
6 156 1390
8 151 1377

12/14/2012 Mysteries of Application Performance

25

Support our compiler!

 Recognizing data parallel structures is essential for automatic
parallelization / vectorization

 Compiler has a limited view of the code

 Do not completely rely on the compiler (or other software layer)
support it:
 Plain programming – do not hide information!
 Use compiler directives / pragmas / …. to support vectorization and

parallelization
 Inlining often helps
 Even with highest optimization level your code should produce correct

results

12/14/2012 Mysteries of Application Performance

Mystery

Performance is a black box – take what you get

Prototype scenario: Jacobi

27

 Equivalent Fortran version

 BTW:
 Compiler parallelizes outer loop in Fortran
 Performance of Fortran is the same as OpenMP C-Code (assuming

comparable compiler switches)

 What is the maximum performance on Intel Xeon E5-2690 (8 cores,
2.9 GHz)?

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo

12/14/2012 Mysteries of Application Performance

28

 Assumption: Main memory bandwidth limits Jacobi performance
 STREAM bandwidth~ 36 GB/s
 How many data must be transferred between processor and main

memory for a single Lattice Update (assume DP)
 y(i,j,k): (1 STORE + 1 LOAD) * 8 B 16 B/LUP
 x(i,j,k+1) 1 LOAD * 8B 8 B/LUP

 Maximum Performance: (36 GB/s) / (24 B/LUP) = 1500 MLUP/s

Performance is a black box

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N
do i = 1 , N
y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+

x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))
enddo
enddo

enddo

Requires “Write Allocate”

Elements have been loaded in
previous (i,j,k) iterations

12/14/2012 Mysteries of Application Performance

Mystery

Sometimes it is so easy to scale on multicore chips

Prototype scenario: Jacobi

30

Multicore scalability mystery: Jacobi iteration

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO
do k = 1 , N
do j = 1 , N; do i = 1 , N

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Changing only a few
letters makes this code
scalable on a 8-core chip

ifort –O3 -axAVX

12/14/2012 Mysteries of Application Performance

31

Multicore scalability mystery: Jacobi iteration

!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo

Single core/socket efficiency
is key issue!

Simple performance model:
• 24 Byte / LUP
• Socket Bandwidth:

36 GB/s
 Max. 1500 MLUP/s

12/14/2012 Mysteries of Application Performance

32

Summary: Performance and Scalability

 When optimizing / parallelizing performance critical code (even
simple) performance models help a lot

 Having a good estimate of the optimal runtime of a code is the first
step of any optimization/parallelization attempt

 Achieving scalability is easy Compare with a bad baseline
(“Slow computing”)

 Single core/thread/process performance should be the first target

12/14/2012 Mysteries of Application Performance

Mystery

Erratic performance numbers on multi-processor
nodes (ccNUMA)

Prototype scenario: STREAM

34

Today: Dual-socket Intel (Westmere) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the
price of ccNUMA architectures: Where
does my data finally end up?

On AMD it is even more complicated ccNUMA within a socket!

12/14/2012 Mysteries of Application Performance

35

ccNUMA performance problems
Affinity matters
 ccNUMA:

 Whole memory is transparently accessible by all processors
 but physically distributed
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"
and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly
more)
 Be aware that you are not the only one using memory (even on a dedicated

node)

C C C C

M M

C C C C

M M

12/14/2012 Mysteries of Application Performance

36

STREAM benchmark on 2x6-core Intel Westmere
Anarchy vs. thread pinning

No pinning: Strong
performance fluctuations (2x)!

Pinning (physical cores first,
alternating sockets)

Pinning threads on ccNUMA is a must:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

12/14/2012 Mysteries of Application Performance

37

Erratic performance on ccNUMA nodes

 Thread pinning is essential!

 Data distribution within OpenMP codes must be correctly done by
programmer first touch

 Even MPI applications suffer in some cases from data locality
issues:
 OS allocates (file) buffers Your MPI performance may depend on the

type of the previous jobs!
 Only system administrator can release the OS buffer at OS level
 User may use a sweeper code…. (Touch all available memory in the node

once then OS releases the buffer)

12/14/2012 Mysteries of Application Performance

38

LIKWID: Lightweight Performance Tools for
efficiently using and programming multicores

 Lightweight command line tools for Linux
 Help to face the challenges without getting in the way
 Focus on X86 architecture
 Philosophy:

 Simple
 Efficient
 Portable
 Extensible

 Get around some
some mysteries
with LIKWID, e.g.
pinning

Open source project (GPL v2):
http://code.google.com/p/likwid/

12/14/2012 Mysteries of Application Performance

39

THANK YOU.

Jan Treibig
Johannes Habich

Moritz Kreutzer
Markus Wittmann

Thomas Zeiser
Michael Meier

Faisal Shahzad
Gerald Schubert

OMI4papps
HQS@HPC II

hpcADD
SKALB

12/14/2012 Mysteries of Application Performance

40

References

Books:
 G. Hager and G. Wellein: Introduction to High Performance Computing for Scientists and

Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924

Papers:
 G. Hager, J. Treibig, J. Habich and G. Wellein: Exploring performance and power properties

of modern multicore chips via simple machine models. Accepted. Preprint: arXiv:1208.2908
 J. Treibig, G. Hager and G. Wellein: Performance patterns and hardware metrics on modern

multicore processors: Best practices for performance engineering. Workshop on Productivity
and Performance (PROPER 2012) at Euro-Par 2012, August 28, 2012, Rhodes Island,
Greece. Preprint: arXiv:1206.3738

 M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann and A. R. Bishop: Sparse
Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable
Implementation. Workshop on Large-Scale Parallel Processing 2012 (LSPP12),
DOI: 10.1109/IPDPSW.2012.211

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011). DOI
10.1016/j.jocs.2011.01.010

BLOG: http://blogs.fau.de/hager/

12/14/2012 Mysteries of Application Performance

41

References
Papers continued:

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking
for stencil computations by multicore-aware wavefront parallelization. Proc. COMPSAC
2009.
DOI: 10.1109/COMPSAC.2009.82

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters. Parallel
Processing Letters 20 (4), 359-376 (2010).
DOI: 10.1142/S0129626410000296. Preprint: arXiv:1006.3148

 J. Treibig, G. Hager and G. Wellein: LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. Proc. PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego CA, September 13, 2010.
DOI: 10.1109/ICPPW.2010.38. Preprint: arXiv:1004.4431

 G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector
multiplication with explicit communication overlap on current multicore-based systems.
Parallel Processing Letters 21(3), 339-358 (2011).
DOI: 10.1142/S0129626411000254

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for
iterative stencil computations. Journal of Computational Science 2 (2), 130-137 (2011).
DOI 10.1016/j.jocs.2011.01.010

12/14/2012 Mysteries of Application Performance

NVIDIA Kepler GK110 Block Diagram

Architecture
 7.1B Transistors
 15 “SMX” units

 192 (SP) “cores” each
 > 1 TFLOP DP peak
 1.5 MB L2 Cache
 384-bit GDDR5
 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

Intel Xeon Phi block diagram

Architecture
 3B Transistors
 60+ cores
 512 bit SIMD
 ≈ 1 TFLOP DP

peak
 0.5 MB

L2/core
 GDDR5

 2:1 SP:DP
performance

64 byte/cy

