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Produit scalaire

On considère deux fonctions u et v définies sur un domaine Ω. On définit
le produit scalaire entre ces deux fonctions par :

(u, v)w =

∫
Ω

u v w ,

où w est une fonction poids donnée.

Par exemple, pour deux fonctions dans L2(Ω) et w = 1, on retrouve le
produit scalaire classique :

(u, v) =

∫
Ω

u v ,

que l’on utilisera plus tard.



Approximation d’une équation différentielle
On considère une équation différentielle de la forme,

Lu − f = 0.

On peut penser, par exemple, à l’équation de Helmholtz −∆u + u = f .

• On cherche une approximation de la solution u sous la forme

uN(x) =
N∑

k=0

ûkϕk(x).

• Les ϕk s’appellent les fonctions de bases. Elles vérifient une relation
d’orthogonalité :

(ϕi , ϕj)w = ciδi,j =

{
ci si i = j ,

0 si i 6= j .

On se donnera de telles fonctions de bases.
• Les ûk sont alors les inconnues qu’il faut déterminer.



Résidu

Si uN est une approximation de l’équation Lu = f , on définit le résidu
par :

RN(x) = LuN(x)− f (x).

• Par exemple, pour l’équation de Helmholtz, on aura :

RN(x) = −∆uN(x) + uN(x)− f (x).

• Le résidu est nul pour la solution de l’équation. Une bonne
approximation a donc un résidu "petit" (en un sens à préciser).



Calcul d’une approximation uN

On se donne des fonctions tests ψk , pour k dans un ensemble IN , et un
poids w∗.
On recherche les coefficients ûk d’une approximation uN en annulant le
résidu associé dans le sens suivant :

(RN , ψk)w∗ =

∫
Ω

RN ψk w∗ = 0, k ∈ IN .

Il y a donc |IN | equations et N + 1 inconnues.

Les choix des ψk , w∗ et IN définissent le type de méthode spectrale.



Problème type

On considère l’approximation de la solution de l’équation différentielle
Lu − f = 0, α < x < β,

B−u = g−, x = α,

B+u = g+, x = β.

On suppose L linéaire. B− et B+ sont des conditions de bords (Dirichlet,
Neumann, Robin).
On se donne des fonctions de bases ϕk pour k ∈ {0, . . . ,N} et on note
uN l’approximation de u,

uN(x) =
N∑

k=0

ûkϕk(x)

Les fonctions de bases vérifient (ϕi , ϕj)w = ciδi,j .



La méthode de Galerkin

• On prend ψk = ϕk pour k ∈ IN = {0, . . . ,N}, et w∗ = w .
• Les fonctions de bases vérifient les conditions de bords homogènes :

B−ϕk = 0 en x = α, B+ϕk = 0 en x = β

On écrit alors la solution u sous la forme u = ũ + v , où :
• ũ est n’importe quelle fonction satisfaisant les conditions de bords.
• la fonction v est donc solution du problème suivant :

Lv − (f − Lũ) = 0, α < x < β,

B−v = 0 x = α,

B+v = 0 x = β.



La méthode de Galerkin

• L’approximation vN =
∑N

k=0 v̂kϕk de v satisfait automatiquement
les conditions de bords homogènes.

• Le résidu est RN(x) = LvN − h, avec h = f − Lũ.
• On veut résoudre les N + 1 équations :

(RN , ϕi )w = (LvN − h, ϕi )w = 0, i = 0, . . . ,N,

ou encore,

N∑
k=0

v̂k(Lϕk , ϕi ) = (h, ϕi )w , i = 0, . . . ,N.



Remarques sur la méthode de Galerkin

• On utilise l’orthogonalité des fonctions de bases pour simplifier les
équations. Par exemple, on a

(h, ϕi )w = ci ĥi

• Si les fonctions de bases ne vérifient pas les conditions de bords
homogènes, on peut construire une nouvelle base à partir de la
première qui a cette propriété.
On perd, en général, la propriété d’orthogonalité dans ce cas.



La méthode tau

• On prend ψk = ϕk pour k ∈ IN = {0, . . . ,N − 2}, et w∗ = w .
• On ne suppose pas que les fonctions de bases vérifient les conditions

de bords homogènes.

Comme précédemment, on a les équations (sur les ûk cette fois) :

N∑
k=0

ûk(Lϕk , ϕi ) = (f , ϕi )w , i = 0, . . . ,N − 2.

On complète ces N − 1 équations avec les deux conditions de bord :

B−uN = g− en x = α, B+uN = g+ en x = β.



La méthode de collocation

• On choisit N + 1 points sur [α, β] que l’on note (xk)k=0,...,N .
• On prend ψk = δxk pour k ∈ IN = {1, . . . ,N − 1}, et w∗ = 1.

On veut donc,

(RN , ψi ) = (LuN − f , ψi ) = 0, i = 1, . . . ,N − 1,

qui se réécrie LuN(xi ) = f (xi ), pour i = 1, . . . ,N − 1.

On complète ces N − 1 équations par les conditions de bords en
x = x0 = α et x = xN = β :

B−uN(x0) = g−, B+uN(xN) = g+.



Remarques sur la méthode de collocation

• Le choix des points xi n’est pas arbitraire, on verra plus loin
comment les choisir suivant la base (ϕk)k=0,...,N choisie.

• La méthode de collocation annule le résidu en tous les points xi mais
ne dit rien ailleurs.

• On obtient N + 1 équations pour N + 1 inconnues ûi .
• Une formulation équivalente consiste à considérer les valeurs uN(xi )

comme les inconnues au lieu des ûi . Il faut alors pouvoir écrire les
dérivées de uN en les points de collocation xk en fonctions de tous
les uN(xi ).



Matrices de différenciations

On considère les uN(xi ) comme les inconnues et on veut résoudre le
système LuN(xi ) = f (xi ), pour i = 1, . . . ,N − 1.

Il faut écrire les dérivées de uN en les points xi en fonctions des
inconnues (exactement comme en différences finies !) :

u
(p)
N (xi ) =

N∑
j=0

d
(p)
i,j uN(xj)

On note D = (di,j)i,j=0,...,N la matrice de différenciation, U le vecteur des
inconnues, et U(p) le vecteur de la dérivée p-ième aux points de
collocations. On a :

U(p) = DpU
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Base de Fourier

On suppose que la solution u est périodique sur [0, 2π].
• On pose ϕk(x) = e ikx et w = 1.
• On considère l’approximation

uK (x) =
k=K∑
k=−K

ûke
ikx

• Le produit scalaire est :

(u, v) =

∫ 2π

0
u v ,

et on a la relation d’orthogonalité suivante :

(ϕk , ϕl) =

∫ 2π

0
e ikx e−ilx = 2πδk,l



Application sur une équation différentielle linéaire

On considère l’équation du second ordre suivante :

Lu = −νu′′ + au′ + bu = f ,

où ν, a et b sont des constantes, et f est une fonction 2π-périodique. On
cherche les solutions 2π-périodique.

Les fonctions de bases vérifient la condition de périodicité. On s’intéresse
aux méthodes de Galerkin et de collocations.



Méthode de Galerkin

Le résidu s’écrit :

RK (x) = LuK − f =
k=K∑
k=−K

ûkLe
ikx − f .

On l’annule contre toutes les fonctions tests :

(RK (x), ϕl) =
k=K∑
k=−K

ûk(Le ikx , e ilx)− (f , e ilx), l = −K , . . . ,K .

Or on a : 
Lv = −νv ′′ + av ′ + b,

Le ikx =
(
νk2 + iak + b

)
e ikx ,

(f , e ilx) =

∫ 2π

0
f (x)e−ilx = 2πf̂l .



Méthode de Galerkin

Finalement on obtient :

(RK , ϕl) =
k=K∑
k=−K

ûk(νk2 + iak + b)(e ikx , e ilx)− 2πf̂l , l = −K , . . . ,K

= 2πûl(νl2 + ial + b)− 2πf̂l , l = −K , . . . ,K
= 0

On a donc trouvé tous les coefficient ûk :

(νk2 + iak + b)ûk = f̂k , k = −K , . . . ,K



Décroissance des coefficients de Fourier

Sur les coefficients de Fourier : Pour une fonction u dans Cm−1([0, 2π]),
périodique, dont la dérivée m-ième est absolument intégrable, on a la
décroisance suivante :

|ûk | = O(|k |−m), k →∞

Si de plus la derivée m-ième est à variation bornée, alors on a un peu
mieux :

|ûk | = O(|k |−m−1), k →∞

En particulier, une fonction C∞ a une décroissance exponentielle de ses
coefficients de Fourier.



Exemple de fonctions



Erreur Spectrale
On a l’estimation d’erreur suivante :

‖u − uK‖L2(0,2π) ≤ CK−m‖u(m)‖L2(0,2π)

Pour une fonction C∞, on a donc une convergence exponentielle (ou
spectrale).



Méthodes de collocation

Les points de collocation pour la base de Fourier sont les points
équirépartis :

xk =
2kπ
N

, k = 0, . . . ,N = 2K + 1

Il y a deux méthodes de collocation :
1. en prenant comme inconnues les ûk ,
2. ou en restant dans l’espace physique en prenant pour inconnues les

uK (xk).
Dans le deuxième cas, il faut construire les matrices de différenciation.



Expression des ûk en fonction des uK (xj)
On a :

uK (xj) =
K∑

k=−K

ûke
ikxj .

En multipliant cette équation par e−ilxj et en sommant sur les
xj , j = 0, . . . ,N − 1, on obtient :

N−1∑
j=0

uK (xj)e
−ilxj =

K∑
k=−K

ûk

N−1∑
j=0

e i(k−l)xj =
K∑

k=−K

ûk

N−1∑
j=0

e i(k−l)
2jπ
N .

On a de plus la relation d’orthogonalité discrète suivante :

N−1∑
j=0

e i(k−l)
2jπ
N =

{
N si k − l = mN,m ∈ Z,
0 sinon.

d’où

ûl =
1
N

N−1∑
j=0

uK (xj)e
−ilxj



Méthode de collocation avec les inconnues ûk
On cherche à annuler le résidu en les points de collocations xj :

−νu′′K (xj) + au′K (xj) + buK (xj) = f (xj), j = 0, . . . ,N − 1

ce qui fait N équations auxquelles on ajoute la condition de périodicité :

uK (xN) = uK (x0)

Le système d’équation s’écrit,

K∑
k=−K

(
νk2 + aik + b

)
ûke

ikxj = f (xj)

En utilisant la relation d’orthogonalité précédente, on obtient :

(
νk2 + aik + b

)
ûk =

1
N

N−1∑
j=0

f (xj)e
−ikxj = f̂k



En pratique

L’algorithme est le suivant :
1. On calcul les coefficient f̂k de f avec une FFT.
2. On résout l’équation algébrique obtenue en annulant le résidu.
3. On obtient les ûk , et donc la solution approchée aux points de

collocation en effectuant une FFT inverse pour calculer la somme∑K
k=−K = ûke

ikxj



Matrices de différenciation

En dérivant l’expression de uK (x) p fois, on obtient au point xj ,

u
(p)
K (xj) =

K∑
k=−K

(ik)p ûke
ikxj .

Et en remplaçant les ûk , on a,

u
(p)
K (xj) =

N−1∑
l=0

uK (xl)
K∑

k=−K

(ik)p

N
e ik(xj−xl )

︸ ︷︷ ︸
d

(p)
l,j

On remarque, si l 6= j :

d
(p)
l,j = v

(p)
K (xj − xl), v̂

(p)
k =

(ik)p

N
, v̂k =

1
N
, vK (x) =

sin(Nx/2)

Nx/2



Résolution par différenciation

On sait construire la matrice de différentiation D = (dl,j). On note U le
vecteur des inconnues uK (xj).
Pour les méthodes de collocations, on annule le résidu aux points de
collocations :

LuK (xj)− f (xj) = 0, j = 0, . . . ,N − 1.

On ajoute les conditions de bords périodiques. Ici uK (xN) = uK (x0).
En notant F le vecteur des f (xj), on obtient le système suivant :(

−νD2 + aD + bI
)
U = F

Que l’on peut résoudre pour obtenir les uK (xj) directement.



Relation entre les méthodes de Galerkin et de collocation
On considère la série de Fourier d’une fonction f

f (x) =
∑
k∈Z

f̂ ek e
ikx .

Comme on l’a vu, les coefficients f̂ ek sont exactement ceux de la méthode
de Galerkin pour −K ≤ k ≤ K .
Les coefficients pour la méthode de collocation sont ceux d’une
transformée discrète :

f̂ ck =
1
N

N−1∑
j=0

f (xj)e
−ikxj

=
1
N

∑
p∈Z

f̂ ep

N−1∑
j=1

e i(p−k)xj

 .

Avec les relations d’orthogonalité discrètes, on a donc la relation suivante
entre les coefficients :

f̂ ck = f̂ ek +
∑
m∈Z∗

f̂ ek+mN , k = −K , . . . ,K



Relation entre les méthodes de Galerkin et de collocation

La solution avec la méthode de collocation s’écrivait :(
νk2 + aik + b

)
ûck − f̂ ck = 0

Soit encore, (
νk2 + aik + b

)
ûck − f̂ ek =

∑
m∈Z∗

f̂ ek+mN

Or, avec la méthode de Galerkin on a la relation,(
νk2 + aik + b

)
ûgk − f̂ ek = 0

La différence entre les deux méthodes vient du phénomène d’aliasing. Elle
fait intervenir des fréquences en dehors du spectre considéré.
On peut montrer que cette erreur est de l’ordre de l’erreur
d’approximation.



Avec une équation à coefficients non constant

On considère maintenant la même équation différentielle mais où le
coefficient a dépend de l’espace :

−νu′′(x) + a(x)u′(x) + b = f (x), 0 < x < 2π

avec a 2π-périodique.
On adapte les méthodes à cette nouvelle équation.



Cas de la méthode de Galerkin

On écrit uK (x) =
∑

k ûke
ikx . On annule le résidu contre toutes les

fonctions de bases :(
−νu′′K (x) + a(x)u′K (x) + buK (x)− f (x), e ilx

)
= 0, l = −K , . . . ,K .

En remplaçant uK par son expression, tous les termes sont identiques au
cas linéaire, sauf pour le terme d’ordre 1 :

2π(νl2 + b)ûl +
K∑

k=−K

ikûk(a(x)e ikx , e ilx) = (f (x), e ilx) = 2πf̂l

Or on a :

(a(x)e ikx , e ilx) =

∫ 2π

0
a(x)e−i(l−k)x = (a(x), e i(l−k)x) = 2πâl−k



Cas de la méthode de Galerkin

Le problème à résoudre est donc finalement :

(νl2 + b)ûl + i
K∑

k=−K

kûk âl−k = f̂l

• On ne peut plus résoudre ce problème explicitement
• La méthode de Galerkin, dans le cas de coefficient dépendant de

l’espace, n’est donc pas bien adaptée.
• Un produit dans l’espace physique correspond à une convolution

dans l’espace des fréquences.



Cas des méthodes de collocation

On commence par la différentiation dans l’espace physique. On rappel la
relation :

U(p) = DpU

On annule le résidu en les points de collocation :

−νu′′K (xj) + a(xj)u
′
K (xj) + buK (xj) = f (xj), j = 0, . . . ,N − 1

Ce qui donne sous forme matricielle :

(−νD2 + D̃ + bI )U = F ,

où la matrice D̃ est la matrice (a(xi )di,j)i,j .

Cette méthode n’est donc pas plus compliquée que dans le cas linéaire !



Collocation dans l’espace des fréquences

On considère les ûk comme inconnues. En annulant le résidu en les points
de collocation on obtient :

K∑
k=−K

(νk2 + b)ûke
ikxj + a(xj)

K∑
k=−K

ikûke
ikxj = f (xj)

On procède comme dans le cas linéaire : on multiplie par e−ilxj et on
somme sur j ,

N(νl2 + b)ûl +
K∑

k=−K

ikûk

N−1∑
j=0

a(xj)e
−i(l−k)xj

︸ ︷︷ ︸
≈Nâl−k

= Nf̂l , −K ≤ l ≤ K



Collocation dans l’espace des fréquences

On obtient ici aussi une sorte de convolution (puisqu’on se place dans
l’espace des fréquences),

(νl2 + b)ûl +
K∑

k=−K

ikûk Âl−k = f̂l , −K ≤ l ≤ K ,

où les coefficients Âl−k sont définies par :

Âl−k =


âl−k si − K ≤ l − k ≤ K ,

âl−k+N si − 2K ≤ l − k < −K ,
âl−k−N si K < l − k ≤ 2K .



Cas d’une équation non-linéaire

On remplace le terme a(x)u′(x) par le terme non linéaire u(x)u′(x).
• Les méthodes de Galerkin et de collocation amènent dans ce cas à

résoudre une équation non linéaire !
• Dans le cas d’un problème non stationnaire (avec une dérivée en

temps), il est possible d’expliciter le terme non linéaire.
• Même dans le cas stationnaire, il est possible de passer par un

problème non stationnaire afin d’expliciter les termes non linéaire et
de récupérer la solution stationnaire, solution du problème de départ.

On considère dans cette partie le problème non linéaire suivant :{
∂tu + u∂xu − ν∂2

xu = 0, 0 ≤ x ≤ 2π
u(x , 0) = u0(x),

où u0 est 2π-périodique.



Discrétisation en temps

On approche la solution par

uK (x , t) =
K∑

k=−K

ûk(t)e ikx ,

et on note unK l’approximation de uK au temps tn = n∆t. Après
discrétisation en temps avec un simple schéma d’Euler explicite, le résidu
est :

RK =
un+1
K − unK

∆t
+ unK∂xu

n
K − ν∂2

xu
n+1
K



Méthode de Galerkin

En appliquant la méthode de Galerkin au résidu, on obtient l’équation
suivante :

(1 + ∆t ν k2)ûn+1
k = ûnk −∆t ŵn

k , −K ≤ k ≤ K ,

où le terme non linéaire apparaît dans la convolution ŵn
k :

ŵn
k = i

K∑
p=−K

p ûnp û
n
k−p

Ici, tout est explicite dans la convolution.



Méthode de collocation

On obtient la même équation que dans le cas Galerkin, mais la
convolution peut se calculer simplement,
• Un produit se fait facilement dans l’espace physique.
• Une dérivée se fait facilement dans l’espace des fréquences.
• La FFT permet de passer d’un espace à l’autre.
• On peut combiner les deux pour calculer la convolution.

L’algorithme est le suivant :
1. On calcul unK (xj) à partir des ûnk à l’aide de la FFT.
2. On calcul ∂xunK (xj) à partir des ikûnk à l’aide de la FFT.
3. On forme le produit wn

K (xj) = unK (xj)∂xu
n
K (xj) en tout les points xj .

4. On calcul enfin les coefficients de Fourier w̃n
k à l’aide de la FFT.
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Quelques propriétés des polynomes de Chebyshev

Lorsque l’on a des conditions de Dirichlet aux bords, au lieu de conditions
périodique, on utilise d’autres bases.
Les polynomes de Chebyshev sont très utilisés pour cela.
Le k-ième polynome de Chebyshev Tk est un polynome de degré k défini
sur [−1, 1] par :

Tk(x) = cos(k arccos(x))

On posant x = cos(z) on a donc :

Tk(cos(z)) = cos(kz)

On peut donc en déduire les premiers polynômes de Chebyshev :

T0(x) = 1,
T1(cos(z)) = cos(z) = x .



Quelques propriétés des polynomes de Chebyshev

On peut montrer une relation de récurrence entre les polynôme de
Chebyshev :

Tk+1 − 2xTk + Tk−1 = 0, k > 1.

Les valeurs aux bords sont Tk(1) = 1 et Tk(−1) = (−1)k .
De plus, ces polynôme ont la même parité que leurs degrés :

Tk(−x) = (−1)kTk(x).

Ils s’annullent en les points de Gauss :

xi = cos

((
i +

1
2

)
π

k

)
, i = 0, . . . , k,

et atteignent leurs maximums en les points de Gauss-Lobatto :

xi = cos
π i

k
, i = 0, . . . , k .



Les polynômes de Chebyshev comme fonctions de base

Les polynômes de Chebyshev sont orthogonaux sur [−1, 1] avec le poids

w =
1√

1− x2
.

On a en effet la relation :

(Tk ,Tl)w =

∫ 1

−1
Tk(x)Tl(x)w(x) =

π

2
ck δk,l

avec :

ck =

{
2, si k = 0,
1, si k ≥ 1.



Méthode tau sur une équation linéaire

On considère de nouveau l’équation linéaire du second ordre :
−νu′′ + au′ + bu = f , −1 < x < 1,

u(−1) = g−

u(1) = g+

On approche la solution par la fonction uN(x) :

uN(x) =
N∑

k=0

ûkTk(x).

Remarques :
1. Les fonctions de bases (les polynômes de Chebyshev) ne vérifient pas

les conditions de bords homogènes. On utilise donc la méthode tau.
2. Il faut calculer les dérivées des fonctions de bases. Dans le cas de

Fourier, c’était très simple. Pour les polynôme de Chebyshev, c’est
plus compliqué.



Dérivées des polynômes de Chebyshev

On peut montrer l’expression suivante sur la dérivée première :

T ′k(x) = 2k
[(k−1)/2]∑

n=0

1
ck−1−2n

Tk−1−2n(x)

On a donc, pour la fonction uN :

u′N(x) =
N∑

k=0

ûkT
′
k(x) =

N∑
k=0

û
(1)
k Tk(x),

avec :

u
(1)
k =

2
ck

N∑
p=k+1,(p+k) impair

pûp, k = 0, . . . ,N − 1,

u
(1)
N = 0.

On peut écrire cette relation sous forme matricielle Û(1) = D̂Û.



Dérivées des polynômes de Chebyshev

Il est possible de continuer pour trouver les dérivées secondes :

u′′N(x) =
N∑

k=0

û
(2)
k Tk(x),

avec :

u
(2)
k =

1
ck

N∑
p=k+2,(p+k) pair

p(p2 − k2)ûp, k = 0, . . . ,N − 2,

u
(2)
N−1 = u

(2)
N = 0

On l’écrit à nouveau sous forme matricielle Û(2) = D̂2Û.



Retour à la méthode tau
Pour la méthode tau, on annule le résidu contre les N − 2 première
fonctions tests, et on ajoute les conditions de bords comme équations.
Le résidu est :

RN = −νu′′N + au′N + buN − f ,

d’où :

(RN ,Ti )w =
N∑

k=1

(
−νû(2)

k + aû
(1)
k + bûk

)
(Tk ,Ti ) = (f ,Ti ),

pour i = 0, . . . ,N − 2. Les relations d’orthogonalités donnent :

−νû(2)
k + aû

(1)
k + bûk = f̂k , k = 0, . . . ,N − 2.

On ajoute les conditions de bords :

uN(−1) = g−, s’écrit
N∑

k=0

(−1)k ûk = g−

uN(1) = g+, s’écrit
N∑

k=0

ûk = g+.



Méthode de collocation

• Pour les méthodes de collocation, on peut utiliser les points de
Gauss-Lobatto.

• Tout comme dans le cas de Fourier, il est possible de construire des
matrices de différenciation et condidérer les valeurs aux points de
collocation comme inconnues.

• Pour une fonction p(x), une formule d’intégration avec les points de
Gauss-Lobatto donne :∫ 1

−1
p(x)w(x) ≈ π

N

N∑
i=0

p(xi )

c i
,

avec c0 = cN = 0 et ck = 1 pour 1 ≤ k ≤ N − 1. On en déduit la
relation d’orthogonalité discrète à partir de la relation continue :

N∑
i=0

1
c i
Tk(xi )Tl(xi ) =

ck
2
N δk,l



Méthode de collocation

On se donne N + 1 réels ui . On note xi = cos πiN les points de
Gauss-Lobatto. La relation uN(xi ) = ui s’écrit sur la base des polynômes
de Chebyshev :

ui =
N∑

k=0

ûk cos
kπi

N
, (1)

que l’on peut calculer à l’aide d’une FFT.
Avec les relations d’orthogonalité discrète, on peut inverser cette relation :

ûk =
2

ckN

N∑
i=0

1
c i
uiTk(xi ) =

2
ckN

N∑
i=0

1
c i
ui cos

kπi

N
,

qui se calcule aussi à l’aide d’une FFT.
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Librairies et logiciels

• Dedalus : http://dedalus-project.org/
Paquet python qui permet de résoudre des équations assez
simplement. Permet de faire du parallèle presque automatiquement.

• Les fichiers matlab du livre Spectral Methods in Matlab de
Trefethen :
http://people.maths.ox.ac.uk/trefethen/spectral.html.
Source d’inspiration pour implémenter ensuite ses propres fonctions.

• DMSUITE : https://fr.mathworks.com/matlabcentral/
fileexchange/29-dmsuite
Suite de fonctions Matlab pour résoudre des équations différentielles
avec des méthodes de collocation.

http://dedalus-project.org/
http://people.maths.ox.ac.uk/trefethen/spectral.html
https://fr.mathworks.com/matlabcentral/fileexchange/29-dmsuite
https://fr.mathworks.com/matlabcentral/fileexchange/29-dmsuite


Librairies et software pour la FFT

• FFTW : http://fftw.org/
Librairie C avec une interface C et Fortran. La librairie de référence
pour faire des FFT.
Leur site web contient une page avec des benchmarks pour comparer
énormément de librairie différentes.

• En Python : il y a une FFT dans numpy et scipy. Possibilité d’utiliser
pyFFTW, qui est plus rapide.

• En Julia : il y a une FFT de base qui utilise FFTW.
• Matlab, Scilab : oui, il y a des fonctions pour ça.
• sur GPU : cuFFT avec CUDA, clFFT avec OpenCL par exemple.

http://fftw.org/


Exemple lorsque la solution n’est pas régulière

On s’intéresse au problème de transport suivant :

∂tu + ∂x(−xu) = 0 − 1 < x < 1,
u(−1, t) = 1,
u(1, t) = −1,

u(x , 0) =
x3

2
− 3

2
x .

La masse de la donnée initiale se concentre en 0.
On résout le problème avec une méthode spectrale à l’aide de Dedalus et
avec un schéma upwind volumes finis.



Exemple avec Dedalus : instabilitée de Kelvin-Helmholtz

On s’intéresse au problème suivant :

∂tu + (u · ∇)u −∆u +∇p = 0, [0, 2]× [−0.5, 0.5]

∇ · u = 0
u(0, y) = u(2, y)

u(x ,−0.5) = (0.5, 0)

u(x , 0.5) = (−0.5, 0)

∂ts + (u · ∇)s −∆s = 0, [0, 2]× [−0.5, 0.5]

s(0, y) = s(2, y)

s(x ,−0.5) = (0, 0)

s(x , 0.5) = (1, 0)

Regarder le code Dedalus permettant de résoudre ce problème !



Résultat de la simulation
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