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Produit scalaire

On considére deux fonctions u et v définies sur un domaine Q. On définit
le produit scalaire entre ces deux fonctions par :

(u,v)w = / uvw,
Q

ol w est une fonction poids donnée.

Par exemple, pour deux fonctions dans L2(Q) et w = 1, on retrouve le
produit scalaire classique :

que I'on utilisera plus tard.



Approximation d'une équation différentielle

On considére une équation différentielle de la forme,
Lu—f=0.

On peut penser, par exemple, a I'équation de Helmholtz —Au+u="f.

® On cherche une approximation de la solution u sous la forme

N
UN(X) = Z LAlkgOk(X).
k=0

® Les oy s'appellent les fonctions de bases. Elles vérifient une relation
d'orthogonalité :

G sii=j,

i @j)w = Cidjj = .
(i, 5) Ci0i {OSH#J.

On se donnera de telles fonctions de bases.

® Les {, sont alors les inconnues qu'il faut déterminer.



Résidu

Si up est une approximation de I'équation Lu = f, on définit le résidu
par :
Rn(x) = Lun(x) — f(x).

® Par exemple, pour I'équation de Helmholtz, on aura :
Rn(x) = —Aun(x) + un(x) — f(x).

® |e résidu est nul pour la solution de I'équation. Une bonne
approximation a donc un résidu "petit" (en un sens a préciser).



Calcul d'une approximation uy

On se donne des fonctions tests 1y, pour k dans un ensemble /y, et un
poids w.

On recherche les coefficients dx d'une approximation uy en annulant le
résidu associé dans le sens suivant :

(Ru 0, = [ Ruiw. =0, ke by
Q
Il'y a donc |/y| equations et N + 1 inconnues.

Les choix des ¥, w, et Iy définissent le type de méthode spectrale.



Probleme type

On considére |'approximation de la solution de |'équation différentielle
Lu—f=0, a<x<}p,
B.u=g , x=aq

Biu=gi, x=p.

On suppose L linéaire. B_ et B, sont des conditions de bords (Dirichlet,
Neumann, Robin).

On se donne des fonctions de bases ¢y pour k € {0,..., N} et on note
un 'approximation de u,

un(x) =D dkpr(x)
k=0

Les fonctions de bases vérifient (¢, ¢j)w = ¢ j.



La méthode de Galerkin

® On prend ¢y = i pour k € Iy ={0,..., N}, et w, = w.

® Les fonctions de bases vérifient les conditions de bords homogeénes :
B_or=0en x=aq, Bipk=0enx=p

On écrit alors la solution v sous la forme u = i+ v, ou :
® i est n'importe quelle fonction satisfaisant les conditions de bords.

® |a fonction v est donc solution du probléme suivant :

Lv —(f = Lid) =0, a<x<p,
B.v=0 x=aq,
Biv=0 x=p.



La méthode de Galerkin

® | 'approximation vy = ZLO Vipk de v satisfait automatiquement
les conditions de bords homogénes.

® e résidu est Ry(x) = Lvy — h, avec h = f — Lii.

® On veut résoudre les N + 1 équations :
(RN7SOI')W:(LVN_ha90i)W:07 i:07"'7N7

ou encore,

N

Z U(Lok, i) = (h,@i)w, =0,...,N.
k=0



Remarques sur la méthode de Galerkin

® On utilise I'orthogonalité des fonctions de bases pour simplifier les
équations. Par exemple, on a

~

(h,@i)w = cihj

® Si les fonctions de bases ne vérifient pas les conditions de bords
homogeénes, on peut construire une nouvelle base a partir de la
premiére qui a cette propriété.
On perd, en général, la propriété d'orthogonalité dans ce cas.



La méthode tau

® On prend ¢, = @k pour k € Iy ={0,..., N — 2}, et w, = w.

® On ne suppose pas que les fonctions de bases vérifient les conditions
de bords homogenes.

Comme précédemment, on a les équations (sur les dj cette fois) :

N
Z kL(PkaSD: :(fa(pi)W7 ’2077,\/_2
=0

On compléte ces N — 1 équations avec les deux conditions de bord :

B_uy=g_enx=aq, Biuy =gy en x=p.



La méthode de collocation

® On choisit N 4 1 points sur [, 8] que I'on note (xk)k=o,...n-
® On prend ¢y = 6y, pour k€ Iy ={1,...,N—1}, et w, = 1.

On veut donc,
(Ry, i) = (Luy — f,)) =0, i=1,...,N—1,
qui se réécrie Luy(x;) = f(x;), pour i=1,..., N —1.

On compléte ces N — 1 équations par les conditions de bords en
XxX=xg=aetx=xy=p":

B_un(x0) = g-, Byun(xn) = g+



Remarques sur la méthode de collocation

® | e choix des points x; n'est pas arbitraire, on verra plus loin
comment les choisir suivant la base (¢k)k=o,....n choisie.

® | a méthode de collocation annule le résidu en tous les points x; mais
ne dit rien ailleurs.

® On obtient N + 1 équations pour N 4 1 inconnues ;.

® Une formulation équivalente consiste a considérer les valeurs uy(x;)
comme les inconnues au lieu des ;. Il faut alors pouvoir écrire les
dérivées de up en les points de collocation xi en fonctions de tous
les up(x;).



Matrices de différenciations

On considére les up(x;) comme les inconnues et on veut résoudre le
systéeme Luyn(x;) = f(x;), pour i=1,..., N —1.

Il faut écrire les dérivées de upy en les points x; en fonctions des
inconnues (exactement comme en différences finies!) :

N
i) =S dPun(x)
j=0

On note D = (d j)i j=0,....n la matrice de différenciation, U le vecteur des
inconnues, et U(P) le vecteur de la dérivée p-iéme aux points de
collocations. On a :

uP) = pry
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Base de Fourier
On suppose que la solution u est périodique sur [0, 27].

® On pose pi(x) = e* et w = 1.

® On considére |'approximation

k=K
uk(x) = Z fye™

k=—K

2m
(u,v) :/ uv,
0

et on a la relation d'orthogonalité suivante :

® Le produit scalaire est :

27
(@kﬂal) — / elkx e*l/X — 2,”5,(7,
0



Application sur une équation différentielle linéaire

On considére |'équation du second ordre suivante :
lu=—vu" +av +bu="f,

ol v, a et b sont des constantes, et f est une fonction 2m-périodique. On
cherche les solutions 2m-périodique.

Les fonctions de bases vérifient la condition de périodicité. On s'intéresse
aux méthodes de Galerkin et de collocations.



Méthode de Galerkin

Le résidu s'écrit :

On I'annule contre toutes les fonctions tests :

k=K

(Re(x),0) = > di(Le™, &™) = (f,e™), I=-K,...
k=—K

Orona:
Lv = —vv' +av + b,

Le™ = (vk? + iak + b) ™,

27
(f,e™) :/ f(x)e™™ = 2rh.
0



Méthode de Galerkin

Finalement on obtient :

k=K

(R, o) = Y k(vk® + iak + b)(e™, &™) —2nfy, 1=K, ...
k=—K
=2n0y(v? + ial + b) —27fy, |=—-K,...,K
=0

On a donc trouvé tous les coefficient i :

(vk? + iak + b) iy = ki, k=-K,...,K



Décroissance des coefficients de Fourier

Sur les coefficients de Fourier : Pour une fonction u dans C™~1(]0, 27]),
périodique, dont la dérivée m-iéme est absolument intégrable, on a la
décroisance suivante :

|0k = O(K[™™), k= o0

Si de plus la derivée m-iéme est a variation bornée, alors on a un peu
mieux :

ldk| = O(lk|™™ 1), Kk — oo

En particulier, une fonction C* a une décroissance exponentielle de ses
coefficients de Fourier.



Exemple de fonctions

Coefficients de Fourier

Convergence des coefficients de Fourier

10% T
= Fonction exp(sin(x))
== Fonction pi - abs(x - pi)
- Pente 2
10° 1
105} 1
10710 + i
10715 + J
1020 : :
10° 10" 102

Fréquence k >=0

108



Erreur Spectrale
On a l'estimation d'erreur suivante :

llu— ukllz0,27) < CK*mHU(m)HLz(o,zw)

Pour une fonction C*, on a donc une convergence exponentielle (ou

spectrale).
5Ord re de convergence de la solution du probléme d'Helmholtz
10 T T
= Solution spectrale
= Solution FD
10 o 4
N
© 105 1
E
2
c
o
gor 1
fin}
10°15 | ]
102 : : .
10° 10° 102 10°

Nombre de points



Méthodes de collocation

Les points de collocation pour la base de Fourier sont les points
équirépartis :
k=0,....,.N=2K+1

Il'y a deux méthodes de collocation :
1. en prenant comme inconnues les iy,

2. ou en restant dans |'espace physique en prenant pour inconnues les
UK(Xk).
Dans le deuxiéme cas, il faut construire les matrices de différenciation.



Expression des { en fonction des uy(x;)

Ona:
K
= E LAlke’ka .
k=—K
En multipliant cette équation par e~ et en sommant sur les

xj,j =0,...,N—1, on obtient :

N—1 K N—1
—ilx: ~ i(k—1) 2™
UK(XJ')G il § : E :e (k— I)xj _ § : dk § :el(k e+ )

k=—K  j=0 k=—K  j=0

N

|
-

—.
Il
o

On a de plus la relation d'orthogonalité discréte suivante :

S knzr [N sik—I=mN.meZ,
e =
0 sinon.

j=0



Méthode de collocation avec les inconnues i
On cherche a annuler le résidu en les points de collocations x; :
—vug () + auk () + buk(x) = f(), j=0,....,N—1
ce qui fait N équations auxquelles on ajoute la condition de périodicité :
UK(XN) = UK(XO)
Le systéme d’équation s'écrit,
K .
> (vK® + aik + b) ™ = f(x))
k=—K

En utilisant la relation d'orthogonalité précédente, on obtient :

=
-

1 2
(vA® + aik + b) i = F(xj)e ™9 = f,
J

Il
o



En pratique

L'algorithme est le suivant :
1. On calcul les coefficient £, de f avec une FFT.
2. On résout I'équation algébrique obtenue en annulant le résidu.

3. On obtient les i, et donc la solution approchée aux points de
collocation en effectuant une FFT inverse pour calculer la somme

K oA ikx
Zk:—K = uge



Matrices de différenciation

En dérivant I'expression de uk(x) p fois, on obtient au point x;,

K
uf 0g) = Y (ik)°are™ .
k=—K
Et en remplacant les iy, on a,
N-1 K .
L
(P)(XJ) uk (x) Z (’N) efk(x—x)
1=0 k=—K
d”)
On remarque, si [ # j :
. (ikyp 1
d/(,P) =viP(x—x), 0= N =g vkx)

_ sin(Nx/2)

Nx/2



Résolution par différenciation

On sait construire la matrice de différentiation D = (d} ;). On note U le
vecteur des inconnues ug(x;).

Pour les méthodes de collocations, on annule le résidu aux points de
collocations :

Luk(xj)) — f(x;)=0, j=0,...,N—1

On ajoute les conditions de bords périodiques. Ici uk(xn) = ux(xo).
En notant F le vecteur des f(x;), on obtient le systéme suivant :

(-vD*+aD+bI)U=F

Que I'on peut résoudre pour obtenir les u(x;) directement.



Relation entre les méthodes de Galerkin et de collocation
On considére la série de Fourier d'une fonction f

f(X Z fe /kx

keZ

Comme on I'a vu, les coefficients fc,f sont exactement ceux de la méthode
de Galerkin pour —K < k < K.

Les coefficients pour la méthode de collocation sont ceux d'une
transformée discréte :

L V-1 _
e = N Z f(x)e="
j=0
Z fe Z el (P—k)x;
peZ

Avec les relations d'orthogonalité discrétes, on a donc la relation suivante
entre les coefficients :

=it Y B k= KoK
meZ*



Relation entre les méthodes de Galerkin et de collocation

La solution avec la méthode de collocation s'écrivait :
(vk® + aik + b) O — ¢ =0

Soit encore,
(vk® + aik + b) G5 — £ = > &

mezZ*

Or, avec la méthode de Galerkin on a la relation,
(vk? + aik + b) 0 — f¢ =0

La différence entre les deux méthodes vient du phénomeéne d’aliasing. Elle
fait intervenir des fréquences en dehors du spectre considéré.

On peut montrer que cette erreur est de |'ordre de I'erreur
d'approximation.



Avec une équation a coefficients non constant

On considére maintenant la méme équation différentielle mais ou le
coefficient a dépend de I'espace :

—vu"(x)+ a(x)u'(x) + b=f(x), 0<x<2m

avec a 2m-périodique.
On adapte les méthodes a cette nouvelle équation.



Cas de la méthode de Galerkin

On écrit uk(x) = >, dke™. On annule le résidu contre toutes les
fonctions de bases :

(—vug(x) + a(x)uj(x) + buk(x) — f(x),e™) =0, I=-K,....K.

En remplacant ux par son expression, tous les termes sont identiques au
cas linéaire, sauf pour le terme d'ordre 1 :

K
on(vP + b)iy + > ikik(a(x)e™, e™) = (f(x), ™) = 2nf
k=—K
Orona:

27

(a(x)eikx, eilx) — / a(X)e—i(/—k)x — (a(x), ei(l—k)x) = 2ma_x
0



Cas de la méthode de Galerkin

Le probléme a résoudre est donc finalement :

K
(WP +b)oy+i Y kikd = F
k=—K

® On ne peut plus résoudre ce probléme explicitement

® |a méthode de Galerkin, dans le cas de coefficient dépendant de
|'espace, n'est donc pas bien adaptée.

® Un produit dans I'espace physique correspond a une convolution
dans |'espace des fréquences.



Cas des méthodes de collocation

On commence par la différentiation dans I'espace physique. On rappel la
relation :
uP) = pry

On annule le résidu en les points de collocation :
—vu () + a(x)uk () + buk (o) = (%), j=0,...,N—1
Ce qui donne sous forme matricielle :
(—vD*+ D+ bl)U =F,
ot la matrice D est la matrice (a(x;)d; )i ;-

Cette méthode n'est donc pas plus compliquée que dans le cas linéaire!



Collocation dans I'espace des fréquences

On considére les d, comme inconnues. En annulant le résidu en les points
de collocation on obtient :

K K

D (WK + b)ie™i +a(x) > ikie™ = f(x)

k=—K k=—K
On procéde comme dans le cas linéaire : on multiplie par e~ et on

somme sur J,

N(V/2+bu/+Z/kukZ “i=kN = Ny, —K <I<K
k=—K




Collocation dans I'espace des fréquences

On obtient ici aussi une sorte de convolution (puisqu’on se place dans
I'espace des fréquences),

K
WP +b)a+ > kA =f, —K<I<K,
k=—K

ot les coefficients A, sont définies par :

d_x si —K<I-—k<K,
Ak=R4_i4n si —2K<I—k<—K,
d_k_nN si K< —k <2K.



Cas d'une équation non-linéaire

On remplace le terme a(x)u'(x) par le terme non linéaire u(x)u'(x).

® Les méthodes de Galerkin et de collocation aménent dans ce cas a
résoudre une équation non linéaire!

® Dans le cas d'un probléme non stationnaire (avec une dérivée en
temps), il est possible d’expliciter le terme non linéaire.

® Méme dans le cas stationnaire, il est possible de passer par un
probléme non stationnaire afin d’expliciter les termes non linéaire et
de récupérer la solution stationnaire, solution du probléme de départ.

On considére dans cette partie le probléme non linéaire suivant :

Osu + uOyu — V@fu
u(x,0)

0, 0<x<2r

up(x),

ou ug est 2m-périodique.



Discrétisation en temps

On approche la solution par

K

uk(x,t) = Z ﬁk(t)eikx,

k=—K

et on note up |'approximation de ukx au temps t, = nAt. Aprés
discrétisation en temps avec un simple schéma d'Euler explicite, le résidu

est :
urtt —
_ K K n n 2 n+1
Rk = —Ar + upOxuyg — VO ug



Méthode de Galerkin

En appliquant la méthode de Galerkin au résidu, on obtient I'équation
suivante :

(1+Atv ko™ = a7 — Atwf, —K<k<K,
ol le terme non linéaire apparait dans la convolution W} :
~n nn ~An
wy = i Z pU uy_ p
p=—K

Ici, tout est explicite dans la convolution.



Méthode de collocation

On obtient la méme équation que dans le cas Galerkin, mais la
convolution peut se calculer simplement,

® Un produit se fait facilement dans I'espace physique.

® Une dérivée se fait facilement dans I'espace des fréquences.

La FFT permet de passer d'un espace a |'autre.

® On peut combiner les deux pour calculer la convolution.

L’algorithme est le suivant :

[y

. On calcul uf(x;) a partir des ] a I'aide de la FFT.

2. On calcul Ocuj(x;) a partir des ikii] a I'aide de la FFT.

3. On forme le produit wj(x;) = uf(x;)Oxup(x;) en tout les points x;.
4

. On calcul enfin les coefficients de Fourier W a l'aide de la FFT.
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Quelques propriétés des polynomes de Chebyshev

Lorsque I'on a des conditions de Dirichlet aux bords, au lieu de conditions
périodique, on utilise d'autres bases.
Les polynomes de Chebyshev sont trés utilisés pour cela.
Le k-iéme polynome de Chebyshev T est un polynome de degré k défini
sur [-1,1] par :

Tk(x) = cos(k arccos(x))

On posant x = cos(z) on a donc :
Tk(cos(z)) = cos(kz)
On peut donc en déduire les premiers polynémes de Chebyshev :

To(X) = ].7

T1(cos(z)) = cos(z) = x.



Quelques propriétés des polynomes de Chebyshev

On peut montrer une relation de récurrence entre les polynéme de
Chebyshev :

Ter1 —2xT+ Ty—1 =0, k>1.

Les valeurs aux bords sont T (1) = 1 et Tx(—1) = (—1)k.
De plus, ces polynéme ont la méme parité que leurs degrés :

Ti(=x) = (=1)" Ti(x).

lls s’annullent en les points de Gauss :

1\«
- iz ) = i =0,...,k
X; cos<(1—|—2) k>’ i=0,...,k,

et atteignent leurs maximums en les points de Gauss-Lobatto :

i .
xi=cos—, i=0,..

k.
k

Ml



Les polynémes de Chebyshev comme fonctions de base

Les polynémes de Chebyshev sont orthogonaux sur [—1, 1] avec le poids

1
V1I—x2

w =
On a en effet la relation :

(Tk,77)w ::jfl T}(X)77(X)IN(X):: g'ckakJ

2, sik=0,
Ck = .
si k> 1.

avec !



Méthode tau sur une équation linéaire
On considére de nouveau I'équation linéaire du second ordre :

—vu' fad +bu=Ff —-1<x<1,
u(—=1)=g-
u(l) = g+

On approche la solution par la fonction up(x) :

N
un(x) =D i Ti(x).
k=0
Remarques :

1. Les fonctions de bases (les polyndmes de Chebyshev) ne vérifient pas
les conditions de bords homogénes. On utilise donc la méthode tau.

2. 1l faut calculer les dérivées des fonctions de bases. Dans le cas de
Fourier, c'était trés simple. Pour les polynéme de Chebyshev, c’est
plus compliqué.



Dérivées des polynémes de Chebyshev

On peut montrer |'expression suivante sur la dérivée premiére :

[(k—1)/2] 1
) =2k Z ———— Tx—1-24(x)

Ck—1-2n

On a donc, pour la fonction uy :

N N
=S aTix) =Y a0 T(x),
0 k=0

avec

2
u) = = 3 piy, k=0,...,N—1,
p=k+1,(p+k) impair

On peut écrire cette relation sous forme matricielle 00 =D0.



Dérivées des polynémes de Chebyshev

Il est possible de continuer pour trouver les dérivées secondes :

N
)= a2 Tu(x
k=0

avec
1 N
2 PN
ui):?k E p(p2—k2)up, k=0,...,N -2,
p=k+2,(p+k) pair
A2 P =0

On I'écrit a nouveau sous forme matricielle U = D2(.



Retour a la méthode tau

Pour la méthode tau, on annule le résidu contre les N — 2 premiére
fonctions tests, et on ajoute les conditions de bords comme équations.
Le résidu est :

Ry = —vuy + aupy + buy — f,
d'ou :
N
(R, Tw = ( vl + a0V + buk) (T, Ti) = (. Ti),
k=1
pour i =0,..., N — 2. Les relations d’orthogonalités donnent :

vil® + a0V + by = b, k=0,....N—2.

On ajoute les conditions de bords :



Méthode de collocation

® Pour les méthodes de collocation, on peut utiliser les points de
Gauss-Lobatto.

® Tout comme dans le cas de Fourier, il est possible de construire des
matrices de différenciation et condidérer les valeurs aux points de
collocation comme inconnues.

® Pour une fonction p(x), une formule d'intégration avec les points de
Gauss-Lobatto donne :

1 N i
[ pbowt ~ 13- 22,

-1 i=0 !

avecCo=cy=0etCr=1pourl < k<N-—1. On en déduit la
relation d’'orthogonalité discréte a partir de la relation continue :



Méthode de collocation

On se donne N + 1 réels u;. On note x; = cos 7 I les points de
Gauss-Lobatto. La relation uy(x;) = u; s'écrit sur la base des polynémes

de Chebyshev :
N ki
= Z 0y cos TR ()
k=0

que I'on peut calculer a I'aide d'une FFT.
Avec les relations d'orthogonalité discréte, on peut inverser cette relation :

Mz

1
706— u; Te(x7) kNZ—u,cos

qui se calcule aussi a I'aide d'une FFT.
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Librairies et logiciels

® Dedalus : http://dedalus-project.org/
Paquet python qui permet de résoudre des équations assez
simplement. Permet de faire du paralléle presque automatiquement.

® Les fichiers matlab du livre Spectral Methods in Matlab de
Trefethen :
http://people.maths.ox.ac.uk/trefethen/spectral.html.
Source d'inspiration pour implémenter ensuite ses propres fonctions.

® DMSUITE : https://fr.mathworks.com/matlabcentral/
fileexchange/29-dmsuite
Suite de fonctions Matlab pour résoudre des équations différentielles
avec des méthodes de collocation.


http://dedalus-project.org/
http://people.maths.ox.ac.uk/trefethen/spectral.html
https://fr.mathworks.com/matlabcentral/fileexchange/29-dmsuite
https://fr.mathworks.com/matlabcentral/fileexchange/29-dmsuite

Librairies et software pour la FFT

® FFTW : http://fftw.org/
Librairie C avec une interface C et Fortran. La librairie de référence
pour faire des FFT.
Leur site web contient une page avec des benchmarks pour comparer
énormément de librairie différentes.

® En Python : il y a une FFT dans numpy et scipy. Possibilité d'utiliser
pyFFTW, qui est plus rapide.

® En Julia : il y a une FFT de base qui utilise FFTW.
e Matlab, Scilab : oui, il y a des fonctions pour ¢a.
® sur GPU : cuFFT avec CUDA, cIFFT avec OpenCL par exemple.


http://fftw.org/

Exemple lorsque la solution n'est pas réguliére

On s'intéresse au probléme de transport suivant :

Oru+ 0x(—xu) =0 —-1<x<1,
1

u(-1,t) =1,
u(l,t) = -1,
3
u(x,0) = — — =x

La masse de la donnée initiale se concentre en 0.
On résout le probléme avec une méthode spectrale a I'aide de Dedalus et
avec un schéma upwind volumes finis.



Exemple avec Dedalus : instabilitée de Kelvin-Helmholtz

On s'intéresse au probléme suivant :

O+ (u-V)u—Au+Vp=0, [0,2] x[-0.5,0.5]
V-u=20
u(0,y) =u(2,y)
u(x,—0.5) = (0.5,0)
u(x,0.5) = (-0.5,0)
Os+(u-V)s—As=0, [0,2] x[-0.5,0.5]
s(0,y) =s(2,y)
s(x,—0.5) = (0,0)
s(x,0.5) = (1,0)

Regarder le code Dedalus permettant de résoudre ce probléme !



Résultat de la simulation
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