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Complexité algorithmique
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Complexité des algorithmes
Lors de l’écriture de codes, il est important d’analyser leur complexité qui permet
d’en estimer les performances et de le comparer à d’autres algorithmes.

Complexité
La complexité correspond à une comparaison asymptotique d’une mesure de
performance (le temps d’exécution ou la mémoire utilisée) en fonction de
paramètres caractériques de l’algo (la dimension de l’espace, la taille du vecteur,
. . .).

Types de complexité
On parle de complexité :

dans le meilleur des cas quand les données fournies en entrée sont les plus
favorables à l’algorithme,
dans le pire des cas quand les données fournies en entrée sont les plus
défavorables à l’algorithme,
moyenne pour la performance moyenne étant donnée une distribution sur
l’ensemble des données en entrée possibles.
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Exemples de complexités en temps

accès au n-ième élément d’un vecteur : complexité constante, en O(1),
recherche par dichotomie dans un vecteur de taille N : complexité
logarithmique, en O(log(N)),
calcul de la norme d’un vecteur de taille N : complexité linéaire, en O(N),
tri d’un vecteur de taille N par la méthode du tri fusion : complexité
linéarithmétique, en O(N log(N)),
multiplication matrice × vecteur de taille N : complexité quadratique
(polynomiale), en O(N2),
méthode du pivot de Gauss en dimension N : complexité cubique
(polynomiale), en O(N3),
problème du rangement de N objets dans un sac à dos, par force brute :
complexité exponentielle en O(N2N).

Voir fr.wikipedia.org/wiki/Analyse_de_la_complexité_des_algorithmes
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Examples

Produit scalaire
Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n− 1
sommes, pour obtenir un scalaire.
On a donc une complexité O(n) en temps et O(1) en espace.

Produit matrice × vecteur
Pour le produit d’une matrice de taille m × n par un vecteur de taille n, on réalise
n produits et n − 1 sommes pour chaque élément du vecteur final de taille m.
On a donc une complexité O(n ×m) en temps et O(m) en espace.

Produit matrice × matrice
Pour le produit de deux matrices de taille m × n et n × p, on réalise n produits +
n sommes pour chaque élément de la matrice finale de taille m × p.
On a donc une complexité O(n ×m × p) en temps et O(m × p) en espace.
Pour le cas où m = p = n, on a O(n3) en temps et O(n2) en espace.
C’est l’approche naïve, la meilleure complexité à ce jour étant en O(n2.3728639)
(see https://en.wikipedia.org/wiki/Matrix_multiplication).
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Parallélisme en mémoire partagée
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Machines actuelles :
1, 2, 4... processeurs,
chaque processeur a n cœurs, avec n = 2, 4, 8, 10, 12, . . . .

Bientôt : une centaine de cœurs par machine.

Parallélisme obligatoire !
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Processus légers (threads) :

Par.Seq. Seq.
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Partage de la mémoire (sans sécurité).

RAM

RAM RAM RAM RAM @ differentes

meme @

RAM meme @

RAM meme @, simultanement

NON!

Standard : Open MP, mais aussi TBB (C++).
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Exemple : le produit matrice x vecteur.
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OK ! NON !
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Performances théoriques
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Performances d’une machine : rêves et réalité

On compte les flops : ×, +,−, /.
Attention aux divisions (plus lentes) !

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cœurs, tournant à
2.6 Ghz (2.6 109 cycles/seconde).

Aspect SIMD (Single Instruction, Multiple Data) :

Instructions AVX :
En un cycle d’horloge, faire :
yi = ai xi + bi , i = 1, . . . , 4 (8 flops).

La performance peak est donc de :

2× 8 × 2.6 109 × 8 = 332 Gflops/seconde.
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Essai : produit matrice x vecteur

Blas Intel, parallèle.
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Nombre d’opérations :
produit scalaire de 2 vecteurs de taille n : 2n flops.
produit matrice(n × n) x vecteur n : n produits scalaires => 2n2 flops.
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Intensité arithmétique
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Bande passante

Pourquoi je n’obtiens pas les performances attendues ?
Un calcul ne peut être effectué que si :

1 les opérandes sont disponibles,
2 on peut écrire le résultat.

=> la bande passante entre (processeur / cache) et la
mémoire limite les performances.

Intensité arithmétique
L’intensité arithmétique prend en compte ce facteur limitant et permet de mieux
comprendre le comportement d’un noyau de calcul par rapport à une architecture
cible :

Ia = nombre d’opérations
quantité de mémoire échangée .

On peut donc l’augmenter en favorisant le réemploi des données, via par exemple
une utilisation efficace des différents niveaux de cache du processeur.
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Le « Roofline Model »
Performance [GFlops/sec] atteignable (Peak performance)

min (Performance crête, Bande passante mémoire · Ia)

8.7 Gflops/s

332 Gflops/s

CPU boundedMemory bounded
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Williams S. et al: Roofline : An Insightful Visual Performance Model for Multicore Architectures
– Commun. ACM, 2009.
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Intensité arithmétiques : quelques exemples

Produit scalaire
Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n− 1
sommes, en lisant/écrivant 2n + 1 valeurs.
On a donc Ia = O(1).

Produit matrice × vecteur
Pour le produit d’une matrice de taille n × n par un vecteur de taille n, on réalise
n produits et n − 1 sommes pour chaque élément du vecteur final de taille n, en
lisant/écrivant n2 + 2n valeurs.
On a donc une intensité arithmétique de Ia = n(2n−1)

n2+2n = O(1).

Produit matrice × matrice
Pour le produit de deux matrices de taille n × n, on réalise n produits + n − 1
sommes pour chaque élément de la matrice finale de taille n × n, en
lisant/écrivant 3n2 valeurs.
On a donc une intensité arithmétique de Ia = n2(2n−1)

3n2 = O(n).
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Intensité arithmétiques : quelques exemples

Laplacien 3D en différences finies
Appliquer le stencil du Laplacien à 7 points en dimension 3 :

∆u(x , y , z) ≈ u(x − h, y , z) + u(x + h, y , z) + · · · − 6u(x , y , z)
h2

d’où une intensité arithmétique en Ia = 8/8 = 1.

Cache mémoire
Attention : un mauvaise utilisation du cache mémoire peut dégrader l’intensité
arithmétique (matrice × matrice en O(1)).
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Intensité arithmétiques : quelques exemples

Quelques méthodes numériques courantes
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Intensité arithmétique : experiences

Matrix × Matrix product (DGEMM, Intel mkl parallel version) :
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Intensité arithmétique : experiences

Produit Matrice × Vecteur (DGEMV, Intel mkl parallel version) :
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

On fait l’hypothèse (raisonnable) que :
sizeof(double) = 2 sizeof(int).

Algorithme : Mémoire = 36/2 doubles ; Flops = 13 =⇒ Ia ' 0.722.
Machine : Mémoire : 8.73 Giga doubles/s

=> Atteignable = 0.722× 8.73 = 6.30 Gflops.

Mesuré = 6.42 Gflops.

Note : borné à 0.87× 8.73 ' 7.6 Gflops/s quelque soit la structure de données.
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

On fait l’hypothèse (raisonnable) que :
sizeof(double) = 2 sizeof(int).
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Comment connaître la bande passante d’une machine ?

Sur le web
En allant sur le site du constructeur : ark.intel.com, www.amd.com, . . .

En la mesurant
Divers programmes, dont stream https://www.cs.virginia.edu/stream/
Programme en langage bas niveau (C/C++, . . .).

NB : augmenter le plus possible la taille des tableaux !
NB : la bande passante n’est parfois pas atteignable sur un seul cœur ⇒
parallélisme.
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Est-ce sans espoir ?

On peut (il faut !) favoriser la réutilisation des données stockées dans le cache L1.

uij = 0.25 (ui+1,j + ui−1,j − 4uij + ui,j+1 + ui,j−1).
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À éviter
produits scalaires,
matrices creuses (préconditionnement LU incomplet),
combinaisons linéaires de grands vecteurs,
méthodes avec un parallélisme limité,
... méthodes avec une faible intensité.

À préférer
... méthodes de grande intensité,
méthodes "embarrassingly" parallèles.
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NUMA
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Non Uniform Memory Access (NUMA)

Les accès distants sont très lents !
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NUMA : remèdes

Fixer les threads sur les cœurs : tasket ou numactl
On évite qu’un thread ne migre vers un autre CPU et se retrouve alors à faire des
accès distants :

$ numactl --cpunodebind =0 --membind =0 mysimulation

"Toucher" les données
La mémoire n’est réellement assignée, que lors de la première écriture, par page et
en fonction du CPU.

1 allouer la matrice ;
2 créer n threads ;
3 initialiser la matrice par bloc et en // (1 thread = 1 bloc) ;
4 faire les opérations par blocs (1 thread = le même bloc).
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