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Complexité algorithmique
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Complexité des algorithmes

Lors de I'écriture de codes, il est important d'analyser leur complexité qui permet
d’'en estimer les performances et de le comparer a d'autres algorithmes.

Complexité

La complexité correspond a une comparaison asymptotique d'une mesure de
performance (le temps d'exécution ou la mémoire utilisée) en fonction de
parameétres caractériques de |'algo (la dimension de I'espace, la taille du vecteur,

).
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Complexité des algorithmes

Lors de I'écriture de codes, il est important d'analyser leur complexité qui permet
d’'en estimer les performances et de le comparer a d'autres algorithmes.

Complexité

La complexité correspond a une comparaison asymptotique d’'une mesure de
performance (le temps d'exécution ou la mémoire utilisée) en fonction de
parameétres caractériques de |'algo (la dimension de I'espace, la taille du vecteur,

~—
5\

Types de complexité
On parle de complexité :

@ dans le meilleur des cas quand les données fournies en entrée sont les plus
favorables a I'algorithme,

@ dans le pire des cas quand les données fournies en entrée sont les plus
défavorables a I'algorithme,

@ moyenne pour la performance moyenne étant donnée une distribution sur
I'ensemble des données en entrée possibles.
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Exemples de complexités en temps

@ accés au n-iéme élément d'un vecteur : complexité constante, en O(1),

@ recherche par dichotomie dans un vecteur de taille N : complexité
logarithmique, en O(log(N)),

@ calcul de la norme d'un vecteur de taille N : complexité linéaire, en O(N),

@ tri d'un vecteur de taille N par la méthode du tri fusion : complexité
linéarithmétique, en O(N log(N)),

@ multiplication matrice x vecteur de taille N : complexité quadratique
(polynomiale), en O(N?),

@ méthode du pivot de Gauss en dimension N : complexité cubique
(polynomiale), en O(N?),

@ probléme du rangement de N objets dans un sac a dos, par force brute :
complexité exponentielle en O(N2V).

Voir fr. wikipedia.org/wiki/Analyse_de_la_complexité_des_algorithmes
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https://fr.wikipedia.org/wiki/Analyse_de_la_complexit%C3%A9_des_algorithmes

Examples

Produit scalaire

Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n — 1
sommes, pour obtenir un scalaire.

On a donc une complexité O(n) en temps et O(1) en espace.
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https://en.wikipedia.org/wiki/Matrix_multiplication

Produit scalaire

Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n — 1
sommes, pour obtenir un scalaire.
On a donc une complexité O(n) en temps et O(1) en espace.

Produit matrice x vecteur
Pour le produit d'une matrice de taille m x n par un vecteur de taille n, on réalise
n produits et n — 1 sommes pour chaque élément du vecteur final de taille m.

On a donc une complexité O(n x m) en temps et O(m) en espace.

| A
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https://en.wikipedia.org/wiki/Matrix_multiplication

Examples

Produit scalaire

Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n — 1
sommes, pour obtenir un scalaire.
On a donc une complexité O(n) en temps et O(1) en espace.

| A

Produit matrice x vecteur

Pour le produit d'une matrice de taille m x n par un vecteur de taille n, on réalise
n produits et n — 1 sommes pour chaque élément du vecteur final de taille m.
On a donc une complexité O(n x m) en temps et O(m) en espace.

| A

Produit matrice x matrice

Pour le produit de deux matrices de taille m x n et n x p, on réalise n produits +
n sommes pour chaque élément de la matrice finale de taille m x p.

On a donc une complexité O(n x m x p) en temps et O(m X p) en espace.

Pour le cas ol m = p = n, on a O(n3) en temps et O(n?) en espace.

C'est I'approche naive, la meilleure complexité a ce jour étant en (O(n?-3728639)
(see https://en.wikipedia.org/wiki/Matrix_multiplication).
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https://en.wikipedia.org/wiki/Matrix_multiplication

Parallélisme en mémoire partagée
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Machines actuelles :
e 1,2 4... processeurs,
@ chaque processeur a n ceceurs, avec n = 2,4,8,10,12,.. ..

Bient6t : une centaine de cceurs par machine.
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Machines actuelles :
e 1,2 4... processeurs,
@ chaque processeur a n ceceurs, avec n = 2,4,8,10,12,.. ..

Bient6t : une centaine de cceurs par machine.

Parallélisme obligatoire !
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Processus légers (threads) :

—_—
—_—
—_— _—
_—
_—

Seq Par. Seq
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Partage de la mémoire (sans sécurité).

@ meme @

RAM RAM RAM RAM @ differentes
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Partage de la mémoire (sans sécurité).

meme @
meme @

Q meme @, simultanement
RAM RAM RAM RAM @ differentes NON!
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Partage de la mémoire (sans sécurité).

meme @
meme @

Q meme @, simultanement
RAM RAM RAM RAM @ differentes NON!

Standard : Open MP, mais aussi TBB (C++).

Lyon Calcul (CNRS / Institut Camille Jordan) Complexité, IA, Roofline, Numa, etc.. 21 mars 2019



Le parallélisme en mémoire partagée expliqué en 2 minutes.

Exemple : le produit matrice x vecteur.
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Exemple : le produit matrice x vecteur.

1 12

2 2 |1

3 20 |y

4 2 |1
5 2 (1| 2
6 2|1
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Le parallélisme en mémoire partagée expliqué en 2 minutes.

Exemple : le produit matrice x vecteur.

1 12

2 2 |1

3 2 1

4 2 |1

5 2 (1| 2

6 2|1
oK ! ] NON ! )
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Performances théoriques
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cceurs, tournant a
2.6 Ghz (2.6 10° cycles/seconde).
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cceurs, tournant a
2.6 Ghz (2.6 10° cycles/seconde).

Aspect SIMD (Single Instruction, Multiple Data) :

En un cycle d’horloge, faire :
yi= aix; + b, i=1,...,4 (8 flops).
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cceurs, tournant a
2.6 Ghz (2.6 10° cycles/seconde).

Aspect SIMD (Single Instruction, Multiple Data) :

En un cycle d’horloge, faire :
yi= aix; + b, i=1,...,4 (8 flops).

La performance peak est donc de :

2x8
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cceurs, tournant a
2.6 Ghz (2.6 10° cycles/seconde).

Aspect SIMD (Single Instruction, Multiple Data) :

En un cycle d’horloge, faire :
yi= aix; + b, i=1,...,4 (8 flops).

La performance peak est donc de :

2x8 x 26 10°
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cceurs, tournant a
2.6 Ghz (2.6 10° cycles/seconde).

Aspect SIMD (Single Instruction, Multiple Data) :

En un cycle d’horloge, faire :
yi= aix; + b, i=1,...,4 (8 flops).

La performance peak est donc de :

2x8 x2610° x 8
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Performances d'une machine : réves et réalité

On compte les flops : x,+,—, /.
Attention aux divisions (plus lentes)!

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8 cceurs, tournant a
2.6 Ghz (2.6 10° cycles/seconde).

Aspect SIMD (Single Instruction, Multiple Data) :

En un cycle d’horloge, faire :
yi= aix; + b, i=1,...,4 (8 flops).

La performance peak est donc de :

2 x 8 x 2.6 10° x 8 = 332 Gflops/seconde.
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Essai : produit matrice x vecteur

Blas Intel, paralléle.

45 T T T

40 LN B
35 - B
30 - [ ] i

25 | B

Gflops/s

20 | L] 4
15 - B

1or o o 1
[ ] o000 g 00

10 100 1000 10000 10000C

Nombre d'opérations :
@ produit scalaire de 2 vecteurs de taille n : 2n flops.

@ produit matrice(n x n) x vecteur n : n produits scalaires => 2n? flops.
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Intensité arithmétique
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Bande passante

Pourquoi je n'obtiens pas les performances attendues ?

Un calcul ne peut étre effectué que si :
@ les opérandes sont disponibles,

@ on peut écrire le résultat.
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Bande passante

Pourquoi je n'obtiens pas les performances attendues ?

Un calcul ne peut étre effectué que si :
@ les opérandes sont disponibles,
@ on peut écrire le résultat.

=> la bande passante entre (processeur / cache) et la
mémoire limite les performances.

| \

Intensité arithmétique

L'intensité arithmétique prend en compte ce facteur limitant et permet de mieux
comprendre le comportement d'un noyau de calcul par rapport a une architecture

cible : o
nombre d’opérations

a = " 7 . 7 z
quantité de mémoire échangée

On peut donc I'augmenter en favorisant le réemploi des données, via par exemple
une utilisation efficace des différents niveaux de cache du processeur.

A\
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Le « Roofline del »

Performance [GFlops/sec] atteignable (Peak performance)

min (Performance créte, Bande passante mémoire - /,)

1000

332 Gflops/s

T

100

L i

Gflops/s

1 P T P P P R -
1 10 100 1000 10000
Arithmetic Intensity

Memory bounded CPU bounded

Williams S. et al: Roofline : An Insightful Visual Performance Model for Multicore Architectures
n.ACN. 20009
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Le « Roofline Model »

Performance [GFlops/sec] atteignable (Peak performance)

min (Performance créte, Bande passante mémoire - /,)

1000

T

332 Gflops/s

T

100 4

41.5 Gflops/s no AVX; 1o vectorisation.
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10 100 1000 10000
Arithmetic Intensity

Memory bounded CPU bounded

Williams S. et al: Roofline : An Insightful Visual Performance Model for Multicore Architectures
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Le « Roofline Model »

Performance [GFlops/sec] atteignable (Peak performance)

min (Performance créte, Bande passante mémoire - /,)

1000

T

332 Gflops/s

T
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41.5 Gflops/s no AVX; 1o vectorisation.
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Memory bounded CPU bounded
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Intensité arithmétiques : quelques exemples

Produit scalaire
Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n — 1

sommes, en lisant/écrivant 2n + 1 valeurs.
On a donc I, = O(1).

21 mars 2019 17 /28
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sité arithmétiques : quelques exemples

Produit scalaire

Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n — 1
sommes, en lisant/écrivant 2n + 1 valeurs.
On a donc I, = O(1).

Produit matrice x vecteur

Pour le produit d'une matrice de taille n x n par un vecteur de taille n, on réalise
n produits et n — 1 sommes pour chaque élément du vecteur final de taille n, en
lisant/écrivant n® + 2n valeurs.

. e 2n—1
On a donc une intensité arithmétique de /, = ",(7212,1) = O(1).
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Intensité arithmétiques : quelques exemples

Produit scalaire

Pour le produit scalaire de deux vecteurs de tailles n, on réalise n produits et n — 1
sommes, en lisant/écrivant 2n + 1 valeurs.
On a donc I, = O(1).

Produit matrice x vecteur
Pour le produit d'une matrice de taille n x n par un vecteur de taille n, on réalise
n produits et n — 1 sommes pour chaque élément du vecteur final de taille n, en
lisant/écrivant n® + 2n valeurs.

. PR 2n—1
On a donc une intensité arithmétique de /, = ",(121%) = O(1).

4

Produit matrice x matrice

Pour le produit de deux matrices de taille n x n, on réalise n produits + n— 1
sommes pour chaque élément de la matrice finale de taille n x n, en
lisant/écrivant 3n? valeurs.

0 d . ité arithméti d/_n2(2n71)_0
n a donc une intensité arithmétique de /, = —5— = O(n).
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Intensité arithmétiques : quelques exemples

Laplacien 3D en différences finies

Appliquer le stencil du Laplacien a 7 points en dimension 3 :

u(X—h,y,z)+u(x+h,y,z)+-~-—6u(X,y,z)

AU(X,}/,Z)% h2

d'ol une intensité arithmétique en /, = 8/8 = 1.
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Intensité arithmétiques : quelques exemples

Laplacien 3D en différences finies

Appliquer le stencil du Laplacien a 7 points en dimension 3 :

u(X—h,y,z)+u(x+h,y,z)+-~-—6u(X,y,z)

AU(XJyJZ)% h2

d'ol une intensité arithmétique en /, = 8/8 = 1.

Cache mémoire

Attention : un mauvaise utilisation du cache mémoire peut dégrader I'intensité
arithmétique (matrice x matrice en O(1)).
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Intensité arithmétiques : quelques exemples

Quelques méthodes numériques courantes

0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A

A
' A

i AT ]

tenflty

SpMV
BLAS1,2 Particle
i Methods
Stencils (PDEs) FFTs, Derme
Lattice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
\ J Jo J
Y e g
o(1) O(lag(N) ) O(N)
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Intensité arithmétique : experiences

Matrix x Matrix product (DGEMM, Intel mkl parallel version) :

Gflops/s

Lyon Calcul (CNRS / Institut Camille Jordan)
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Intensité arithmétique : experiences

Produit Matrice x Vecteur (DGEMV, Intel mkl parallel version) :

45 .
40 - ) B
35 - B
30 - ° 1

25 1

Gflops/s

20 | L] 4

15 B

10 100 1000 10000 10000¢
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

0o 1 2 3 4 0 1 2 3 4 5

o[ao]_T55” Ter] o 3T o ] [ [ ]

1 82 92 0 1 2 3 4 5 6 7 8 9 10 11
o[ [urfes] | |2 Tl s [ [2[0[2 [s[2]5]
3|30 15|45 0 1 2 3 4 5 6 7 8 9 10 11
4 2.5 8.9 values ‘2.0‘3.5|6.7‘&2‘9.2‘1.1‘2.8‘3.0‘1.5‘4.5‘25‘8.9‘
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

0o 1 2 3 4 0 1 2 3 4 5

o[ao]_T55” Ter] o 3T o ] [ [ ]

1 82 9.2 1 2 3 4 5 6 7 8 9 10 11
o[ [urfes] | |2 Tl s [ [2[0[2 [s[2]5]
3|30 15|45 0 1 2 3 4 5 6 7 8 9 10 11
4 2.5 8.9 values ‘2.0‘3.5|6.7‘&2‘9.2‘1.1‘2.8‘3.0‘1.5‘4.5‘25‘8.9‘

On fait I'hypothése (raisonnable) que :
sizeof (double) = 2 sizeof (int).

@ Algorithme : Mémoire = 36/2 doubles; Flops = 13 = [, ~ 0.722.
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

0o 1 2 3 4 0 1 2 3 4 5

o [s[s[r]wa] [ | |
82 92

11|28 wh"d‘{HHH‘|H‘

N
=Y
L
o
o
S

2w N o= o

0
2.5 8.9 values ‘20‘35|67‘&2‘9.2‘1.1‘2.8‘3.0‘1.5‘4.5‘25‘89‘

On fait I'hypothése (raisonnable) que :
sizeof (double) = 2 sizeof (int).

@ Algorithme : Mémoire = 36/2 doubles; Flops = 13 = [, ~ 0.722.
@ Machine : Mémoire : 8.73 Giga doubles/s
=> Atteignable = 0.722 x 8.73 = 6.30 Gflops.
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

0o 1 2 3 4 0 1 2 3 4 5

o [s[s[r]wa] [ | |
82 92

11|28 wh"d‘{HHH‘|H‘

N
=Y
L
o
o
S

2w N o= o

0
2.5 8.9 values ‘20‘35|67‘&2‘9.2‘1.1‘2.8‘3.0‘1.5‘4.5‘25‘89‘

On fait I'hypothése (raisonnable) que :
sizeof (double) = 2 sizeof (int).

@ Algorithme : Mémoire = 36/2 doubles; Flops = 13 = [, ~ 0.722.
@ Machine : Mémoire : 8.73 Giga doubles/s
=> Atteignable = 0.722 x 8.73 = 6.30 Gflops.

Mesuré = 6.42 Gflops.
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Intensité arithmétique : expériences

Appliquer le stencil du laplacien en 3-d (7 points), stocké en matrice CSR :

0o 1 2 3 4 0 1 2 3 4 5

olzo] sl o7 ﬂllllll

1 82 92

2| _|ujes “MH\HHHI\H
3/30 15|45 o

4 25 8.9 ‘20‘35|67‘&2‘9.2‘1.1‘2.8‘3.0‘1.5‘4.5‘25‘89‘

On fait I'hypothése (raisonnable) que :
sizeof (double) = 2 sizeof (int).

@ Algorithme : Mémoire = 36/2 doubles; Flops = 13 = [, ~ 0.722.
@ Machine : Mémoire : 8.73 Giga doubles/s
=> Atteignable = 0.722 x 8.73 = 6.30 Gflops.

Mesuré = 6.42 Gflops.

Note : borné a 0.87 x 8.73 ~ 7.6 Gflops/s quelque soit la structure de données.
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Comment connaitre la bande passante d'une machine ?

En allant sur le site du constructeur : ark.intel.com, www.amd.com, ...

@ Divers programmes, dont stream https://www.cs.virginia.edu/stream/

@ Programme en langage bas niveau (C/C++, ...).

NB : augmenter le plus possible la taille des tableaux !
NB : la bande passante n'est parfois pas atteignable sur un seul coeur =
parallélisme.
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Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées dans le cache L1.
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Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées dans le cache L1.

uj = 0.25 (u,-+1,j +ui—1; — 4u,~j + uij+1+ U;’jfl).
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@ produits scalaires,

@ matrices creuses (préconditionnement LU incomplet),
°
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(]

combinaisons linéaires de grands vecteurs,
méthodes avec un parallélisme limité,
. méthodes avec une faible intensité. )
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@ produits scalaires,
@ matrices creuses (préconditionnement LU incomplet),
@ combinaisons linéaires de grands vecteurs,

@ méthodes avec un parallélisme limité,
@ ... méthodes avec une faible intensité.

A préférer

@ ... méthodes de grande intensité,

@ méthodes "embarrassingly" paralléles.

A\
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Non Uniform Memory Access (NUMA)

Ul P2

I Remaote Memory

Virtualizemyde.ca

Operating System
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Non Uniform Memory Access (NUMA)

Ul P2

I Remaote Memory

Virtualizemyde.ca

Operating System
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NUMA : remedes

Fixer les threads sur les cceurs : tasket ou numactl
On évite qu'un thread ne migre vers un autre CPU et se retrouve alors a faire des
acces distants :

$ numactl --cpunodebind=0 --membind=0 mysimulation
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Fixer les threads sur les coeurs : tasket ou numactl

On évite qu'un thread ne migre vers un autre CPU et se retrouve alors a faire des
acces distants :

$ numactl --cpunodebind=0 --membind=0 mysimulation

"Toucher" les données

| A

La mémoire n'est réellement assignée, que lors de la premiere écriture, par page et
en fonction du CPU.

@ allouer la matrice;
@ créer n threads;
@ initialiser la matrice par bloc et en // (1 thread = 1 bloc);

@ faire les opérations par blocs (1 thread = le méme bloc).

A\
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