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Représentation des nombres

Lyon Calcul (CNRS / Institut Camille Jordan) Nombres, machines et calculs 21 Mars 2019



Avec quels nombres veut-on calculer ?

o N, entiers naturels : {0,1,2,...}.

e Z, entiers relatifs : {...,—2,-1,0,1,2,...}.
o Q, rationnels : a/b avec a € Z, b € Z*.

@ R, nombres réels.

@ C, nombres complexes.
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Binaire

Représentation machine

Il faut traduire les calculs en langage binaire !

bit chiffre en base 2 (0 ou 1)
octet (byte) unité utilisée pour les adresses mémoires (8 bits)

mot (word) unité de base manipulée par un microprocesseur (64 bits)

Possibilité d'encodage

Nombre de bits Motifs Nombre de motifs

1 bits 01 2

2 bits 00 01 10 11 4

3 bits 000 001 010 011 100 101 8

110 111

8 bits 256

64 bits 18446744 073709551616
n bits 2"
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Codage des entiers naturels

En base 10

Avec p décimales di, on peut coder 107 nombres naturels différents sous la forme
dp1 x10P7 4 dy 5 x 10P2 + -+ dy x 100+ dy x 10+ dp x 1.

Par exemple : 2019 =2 x 1000+ 0 x 100 +1 x 10+ 9 x 1.

En base 2

Avec p bits bi, on peut coder 2P nombres naturels différents sous la forme

bp—1 ><2”_1—|—bp_2><2p_2—|—-~-+b2><4+b1 X 24 by x 1.
Par exemple :

111111000115y =1 x 20 +1x 22 + 1 x 2% + 1 x 2"+ 1 x 2° + 1 x 2°
0x2"+0x22+0x22+1x2" +1x2°
= 1024 4 512 + 256 + 128 + 64 + 32 + 2 + 1 = 20193
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Codage des entiers relatifs

Représentation naive

@ Le bit de poids fort (puissance la plus élevée) pour représenter le signe,

@ Les bits restants pour représenter la valeur absolue.

4 = 00000100 )
—4 = 10000100,

Probleme : la somme (usuelle) de 4 et —4 ne fait pas 0 dans cette représentation :

4 = 00000100
—4 = 10000100,
—8 = 100010005
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Codage des entiers relatifs

Complément a 2

Pour éviter ce probleme, on utilise le complément a 2 pour représenter les
nombres entiers négatif.

Exemple
Par exemple, pour coder —4 avec 8 bits :
@ on prend la représentation de 4 : 00000100>),
@ on inverse tous ses bits (NOT) : 111110115 (=28 — 1 —4),
o on ajoute 1 : 111110113 + 00000001y = 11111100, (= 28 — 4).

Un entier négatif k est donc représenter, avec n bits, comme le nombre 2" — |k|.
Avec cette méthode, il n'y a plus de probleme avec I'addition :

4 = 00000100
—4 =11111100
0 = 00000000
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Représentation des nombres entiers

En précision finie

Les nombres naturels et relatifs sont en général codés sur p = 32 ou p = 64 bits.

On peut donc représenter les nombres :
naturels entre 0 et 2P — 1
relatifs entre —2P~1 + 1 et 2P —1

Comment faire pour représenter de grands entiers?

En précision "infinie"
Représenter les entiers sur plusieurs mots machines, grace a des bibliotheques
comme GMP, beaucoup utilisée en cryptographie et théorie des nombres.

Probleme : c'est plus lent!
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Représentation des nombres réels

En base 10

En s'inspirant du codage des entiers :

dp1 X 10P1 4 dy x 10M +dp x 10° +d_3 x 1072 +d 5 x 1072 4 ...
Par exemple :

5837.25 =5x 10° +8x 102 +3 x 10" +7x 10°+2 x 1071 + 5 x 10~ 2.

En base 2

De méme :

bpoy X 2P by x 2 4 By x 20+ by x 27T 4 by x 272
Par exemple :

1011011001101.01() = 4096 + 1024 + 512 + 128 + 64 +8 +4 + 1 + 272

Lyon Calcul (CNRS / Institut Camille Jordan) Nombres, machines et calculs 21 Mars 2019



Représentation des nombres réels

Il 'est impossible de représenter exactement tous les nombres réels avec une
quantité d'information finie!

Nombres irrationnels

7, e, \/2, ... et tous les nombres irrationnels ne sont pas représentables avec un
nombre fini de chiffres (sinon ils seraient rationnels).

Nombres normaux

Un nombre normal est un nombre réel tel que la fréquence d'apparition de tout
n-uplet dans la suite de ses « décimales » dans toute base est équirépartie.

Nombre rationnels

Dépend de la base :
L % = 0.3333.. ((10) = 01(3)
° % = 0.130) = 0.00011001100110011. . (5
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Et les nombres rationnels ?

On pourrait représenter les nombres rationnels sous forme de fractions

irréductibles 7 avec a et b des entiers signés.

Avantage

Tout nombre réel peut étre approché d'aussi prés qu'on veut par des nombres
rationnels (densité).

nconvénients

On ne peut pas borner la taille (nombre de chiffres) des numérateurs et
dénominateurs.

Conséquence : le colit des opérations élémentaires n’est pas constant (i.e. le
temps de calcul pour une addition peut varier en fonction des opérandes).
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Nombres a virgule flottante
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Nombres a virgule flottante

Pour un nombre fixé p de chiffres, on peut approcher un plus grand intervalle de
valeurs en utilisant la notation a virgule flottante : on place la virgule juste a
gauche du premier chiffre non nul et on multiplie par une puissance de la base.

La représentation se décompose alors en un signe, une mantisse et un exposant.

Flottants en base 10

nombre | flottant | signe | mantisse | exposant
0.0121 +0.121 x 1071 a4 0.121 -1
—5837.25 | —0.583725 x 10* 0.583725 4

Flottants en base 2

nombre | flottant | signe | mantisse | exp.
0.0121 +0.1100011000 x 2—° + 0.1100011000 —6
—5837.25 | —0.101101100110101 x 213 0.101101100110101 | 13
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Nombres a virgule flottante

En virgule flottante, en base b, un nombre réel x est représenté par :

@ un signe s € {0,1}
e 0 : positif
e 1 : négatif
@ une mantisse m, écrite en virgule fixe en base b sur p chiffres appelés digit,
sous la forme 0.dydxd3d; . .. dp.

@ un exposant e € {emin, -, €max |

x = (=1)* x m x b®

On dit que le nombre flottant x est de précision p (avec p > 1).

Cas particulier de la base 2 : d; vaut toujours 1 et n’a pas besoin d'étre stocké

(bit implicite).
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Standardisation - |IEEE 7

@ Avant les années 1980 : chaque fabricant utilisait sa propre représentation des
nombres flottants et de son arithmétique.

e Quelle base b était utilisée ? Avec quelle amplitude [emin, €max] de I'exposant ?
e Un méme code donnait des résultats différents sur différentes architectures de
processeur.
@ Besoin de standardisation en base 2.

o Fixer précisément le format des données et leur représentation.
e Définir le comportement et la précision des opérations de bases.
e Définir les valeurs spéciales, les modes d'arrondis et la gestion des exceptions.

@ En 1985 : publication du standard IEEE 754-1985.
@ En 2008 : révision du standard : IEEE 754-2008.
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Représentation standard des nombres flottants

IEEE 754

H Simple précision ‘ Double précision ‘

Précision p 24 53
Longueur de |'exposant e 8 11
Longueur de la représentation (p + e) 32 64

€min, €max —126, 127 —1022, 1023
Type C/C++ float double

Autres contributions du standard |[EEE 754

o Valeurs spéciales : —oco (1/0), 400 (—1/0), NaN (0/0), ...
@ Modes d'arrondi : vers +00, —o0, 0, ou vers le flottant le plus proche.

o Exceptions : opération invalide, dépassement (overflow), "soupassement"
(underflow), division par zéro, ...
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Nombres a virgule flottante : normaux et sous-normaux

Nombres normaux

Les nombres normaux sont ceux dont la représentation est celle vu
précédemment :

@ En base 10, la mantisse est de la forme m = 0.nyn; ... n, ou n; est compris
entre 0 et 9 avec n; non nul.

@ En base 2, c'est un peu différent, la mantisse est de la forme
m=1.nny...ny, ot les n; sont dans {0, 1}. Le 1 avant la virgule n'est pas
codé, il est implicite.

Nombres sous-normaux

Afin d’avoir une meilleure répartition des nombres proches de 0, on définit les
nombres sous-normaux. Lorsque I'exposant est minimal (e = enin), on autorise la
mantisse a ne plus suivre le modéle des nombres normaux :

@ en base 10, n; peut-&tre égal a 0 (par exemple, 0.0125 x 10~1?),
@ en base 2, la mantisse est de la forme m = 0.n1n5 ... ny,.

Attention aux performances dégradées avec les nombres sous-normaux (DEMO)
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Nombres a virgule flottant : limites

Propriétés et définitions

Plus petit nombre normal représentable : ¢ = £+0.15%""
Plus petit nombre sous-normal représentable : ¢ = +0.0. .. 1b%"
Plus grand nombre représentable : M = £0.(b — 1) ... (b — 1)b*m>

Dépassement de capacité : nombre plus petit que ¢ => débordement par valeur
inférieure (underflow) ; Nombre plus grand que M — débordement par valeur
supérieure (overflow).

Limites

@ Certains réels sont par définition impossibles a représenter en numération classique :
1/3, 7 ...

@ La représentation en un nombre fixe d'octets oblige le processeur a faire appel a des
approximations afin de représenter les réels (DEMO).

@ Le degré de précision de la représentation par virgule flottante des réels est
directement proportionnel au nombre de bits alloués a la mantisse, alors que le
nombre de bits alloués a I'exposant conditionnera I'amplitude de I'intervalle des
nombres représentables.
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Nombres a virgule flottante : plus loin?

Et si on veut plus de précision ?

@ type long double, binary128, binary256, pas trés normalisés ...
@ Bibliotheques :
GNU MPFR (Gnu Multiple Precision)

http://www.mpfr.org/ (Paul Zimmermann, Inria Nancy).
Mais c'est forcément trés lent.
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Quelques propriétés des nombres a virgule flottante

Les ensembles F(b, p, €min, €max) des flottants décrivent seulement un
sous-ensemble fini des nombres réels. DeclareMathOperator

Arrondi

@ Si x € F(b, p, €min, €max), Arrondi(x) = x.
° Sl X ¢ F(bapa eminyemax) :

Arrondi(x) = nombre de F(b, p, €min, €max) le plus proche de x.

Arrondi(x) = nombre de F(b, p, €min, €max) immédiatement supérieur.
Arrondi(x) = nombre de F(b, p, €min, €max) immédiatement inférieur.
Arrondi(x) = nombre de F(b, p, €min, €max) le plus proche en direction de zéro.

DEMO

Unit in the Last Place (ULP)

Taille de I'intervalle séparant chaque nombre du nombre représentable le plus
proche (dans la direction opposée de celle de zéro.
DEMO
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Arithmétique flottante
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Opérations sur les flottants

Opérations élémentaire

@ x +y —> Arrondi(Arrondi(x) + Arrondi(y))
e x —y — Arrondi(Arrondi(x) — Arrondi(y)) ...

Attention

Plusieurs propriétés de I'arithmétique (associativité, distributivité, ...) ne sont plus
valides en arithmétique flottante (DEMO)!

Conséquence : le méme programme, compilé par deux compilateurs
(optimiseurs) différents ne donne pas toujours exactement le méme résultat.
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Arithmétique flottante : conséquences

Arrondis - Anti-missile Patriot, 1991

o Tics de I'horloge interne en 1/10s.
@ Temps écoulé mesuré en nombre de tics (entier).

@ Calcul de la position d'interception dépend du
temps = nombre de tic x 1/10 (erreur de
0.000000095 sur 1/10 en 24bits).

@ Aprés 100h de fonctionnement, vitesse de 1676m/s :
0.000000095 x 100 x 3600 x 10 x 1676 = 573m

Dépassement - Ariane 5, 1996

@ Vitesse horizontale en double convertie en entier
signé sur 16 bits.

@ Valeur supérieure a 32767 —> échec de la
conversion.
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Arithmétique flottante : annulation catastrophique

Catastrophic cancellation

Perte de précision qui résulte de la soustraction de deux nombres voisins.

Annulation catastrophique - Différences finies

Exemple pour I'approximation de la dérivée premiere par la méthode des
différences finies avec un pas d'espace h trop petit :

f(x—l—h)—f(x—h).

I ~
f'(x) = 5

DEMO

Racines d'un polynéme du second degré

Résolution de ax® + bx? + ¢ = 0 par la méthode classique :

+b+ VA

A = b% — 4ac puis x =
2a

DEMO
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Arithmétique flottante : erreurs d’arrondi

Calcul de récurrences

Calcul des termes de la suite :
Upt1 = 4u, — 1

avec up = 1/3.
DEMO

Calcul de récurrences

Calcul des termes de la suite :

Upt1 = 3up, — 1

avec up = 1/2.
DEMO
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Arithmétique flottante : erreurs d’arrondi

Mais qu’est ce que cette histoire? 7 ?
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Arithmétique flottante : erreurs d’arrondi

Mais qu’est ce que cette histoire? 7 ?

Explication :

Q upt1 =4u,—1avecup=1/3:

11 =1

*Zz > o
i=0

et donc up = 1/3 ne peut pas étre représenté exactement en flottant. L'erreur
initiale est amplifiée...

S
-Mb—‘
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Arithmétique flottante : erreurs d’arrondi

Mais qu’est ce que cette histoire? 7 ?

Explication :

Q upt1 =4u,—1avecup=1/3:

11 =1

*Zz > o
i=0

et donc up = 1/3 ne peut pas étre représenté exactement en flottant. L'erreur
initiale est amplifiée...

S
-Mb—‘

Q upy1 =3u, — 1 avec ug =1/2.
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Arithmétique flottante : erreurs d’arrondi

Mais qu’est ce que cette histoire? 7 ?
Explication :

Q upt1 =4u,—1avecup=1/3:

11 =1

*Zz > o
i=0

et donc up = 1/3 ne peut pas étre représenté exactement en flottant. L'erreur
initiale est amplifiée...

Q upy1 =3u, — 1 avec ug =1/2.
En base 2 :
e 1/2 s’écrit 0.1,
e 3/2s'écrit 1.1
donc le calcul est exact .

S
-Mb—‘

Lyon Calcul (CNRS / Institut Camille Jordan)

Nombres, machines et calculs

21 Mars 2019



Arithmétique flottante : que on calculer?

Stabilité aux perturbations

On ne peut effectuer que des calculs pour lesquels la solution dépend gentiment
des données (problémes bien posés).

@ Les nombres a virgule flottante doivent étre regardés avec méfiance, mais ils
n'ont pas empéché le développement du calcul et de ses applications : ce ne
sont pas les erreurs d'arrondi qui limitent la validité de la prévision
météorologique, pour ne citer que cet exemple.

@ La stabilité des algorithmes vis-a-vis des petites perturbations doit étre
étudiée.

Exemple de probleme mal posé (conditionnement élevé)

Résoudre de systeme linéaire Ax = b en prenant pour A la matrice de Hilbert de
taille n, avec A;j =1/(i+j —1) (DEMO).

@ La solution est dans Q : calcul exact si on a les moyens de calculer dans Q
(Exemple : bibliothéque LINBOX)

@ On peut alors comparer la solution dans Q a la solution « flottante ».
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Nombres a virgule flottante : références bibliographiques

@ What every scientist should know about floating-point arithmetic. David
Goldberg.
Texte disponible a de nombreux endroits, entre autres a :
http://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf.

e Handbook of Floating-Point Arithmetic, Muller et collaborateurs (ENS Lyon).

o Calcul mathématique avec Sage. Casamayou, Alexandre et Connan,
Guillaume et Dumont, Thierry et Fousse, Laurent et Maltey, Francois et

Meulien, Matthias et Mezzarobba, Marc et Pernet, Clément et Thiéry,
Nicolas et Zimmermann, Paul.
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