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Représentation des nombres
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Nombres

Avec quels nombres veut-on calculer ?
N, entiers naturels : {0, 1, 2, . . .}.
Z, entiers relatifs : {. . . ,−2,−1, 0, 1, 2, . . .}.
Q, rationnels : a/b avec a ∈ Z, b ∈ Z∗.
R, nombres réels.
C, nombres complexes.
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Binaire

Représentation machine
Il faut traduire les calculs en langage binaire !

bit chiffre en base 2 (0 ou 1)
octet (byte) unité utilisée pour les adresses mémoires (8 bits)
mot (word) unité de base manipulée par un microprocesseur (64 bits)

Possibilité d’encodage
Nombre de bits Motifs Nombre de motifs

1 bits 0 1 2
2 bits 00 01 10 11 4
3 bits 000 001 010 011 100 101

110 111
8

8 bits . . . 256
64 bits . . . 18 446 744 073 709 551 616
n bits . . . 2n
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Codage des entiers naturels
En base 10
Avec p décimales dk , on peut coder 10p nombres naturels différents sous la forme

dp−1 × 10p−1 + dp−2 × 10p−2 + · · ·+ d2 × 100 + d1 × 10 + d0 × 1.

Par exemple : 2019 = 2× 1000 + 0× 100 + 1× 10 + 9× 1.

En base 2
Avec p bits bk , on peut coder 2p nombres naturels différents sous la forme

bp−1 × 2p−1 + bp−2 × 2p−2 + · · ·+ b2 × 4 + b1 × 2 + b0 × 1.

Par exemple :

11111100011(2) = 1× 210 + 1× 29 + 1× 28 + 1× 27 + 1× 26 + 1× 25

0× 24 + 0× 23 + 0× 22 + 1× 21 + 1× 20

= 1024 + 512 + 256 + 128 + 64 + 32 + 2 + 1 = 2019(10)
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Codage des entiers relatifs

Représentation naïve
Le bit de poids fort (puissance la plus élevée) pour représenter le signe,
Les bits restants pour représenter la valeur absolue.

Exemple

4 = 0 0000100(2)

−4 = 1 0000100(2)

Problème : la somme (usuelle) de 4 et −4 ne fait pas 0 dans cette représentation :

4 = 0 0000100(2)

−4 = 1 0000100(2)

−8 = 1 0001000(2)
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Codage des entiers relatifs

Complément à 2
Pour éviter ce problème, on utilise le complément à 2 pour représenter les
nombres entiers négatif.

Exemple
Par exemple, pour coder −4 avec 8 bits :

on prend la représentation de 4 : 00000100(2),
on inverse tous ses bits (NOT) : 11111011(2) (= 28 − 1− 4),
on ajoute 1 : 11111011(2) + 00000001(2) = 11111100(2) (= 28 − 4).

Un entier négatif k est donc représenter, avec n bits, comme le nombre 2n − |k|.
Avec cette méthode, il n’y a plus de problème avec l’addition :

4 = 00000100
−4 = 11111100
0 = 00000000
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Représentation des nombres entiers

En précision finie
Les nombres naturels et relatifs sont en général codés sur p = 32 ou p = 64 bits.

On peut donc représenter les nombres :
naturels entre 0 et 2p − 1
relatifs entre −2p−1 + 1 et 2p−1 − 1

Comment faire pour représenter de grands entiers ?

En précision "infinie"
Représenter les entiers sur plusieurs mots machines, grâce à des bibliothèques
comme GMP, beaucoup utilisée en cryptographie et théorie des nombres.

Problème : c’est plus lent !
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Représentation des nombres réels

En base 10
En s’inspirant du codage des entiers :

dp−1 × 10p−1 + · · ·+ d1 × 101 + d0 × 100 + d−1 × 10−1 + d−2 × 10−2 + . . .

Par exemple :

5837.25 = 5× 103 + 8× 102 + 3× 101 + 7× 100 + 2× 10−1 + 5× 10−2.

En base 2
De même :

bp−1 × 2p−1 + · · ·+ b1 × 21 + b0 × 20 + b−1 × 2−1 + b−2 × 2−2 + . . .

Par exemple :

1011011001101.01(2) = 4096 + 1024 + 512 + 128 + 64 + 8 + 4 + 1 + 2−2

= 5837.25(10)
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Représentation des nombres réels

Il est impossible de représenter exactement tous les nombres réels avec une
quantité d’information finie !

Nombres irrationnels
π, e,

√
2, . . . et tous les nombres irrationnels ne sont pas représentables avec un

nombre fini de chiffres (sinon ils seraient rationnels).

Nombres normaux
Un nombre normal est un nombre réel tel que la fréquence d’apparition de tout
n-uplet dans la suite de ses « décimales » dans toute base est équirépartie.

Nombre rationnels
Dépend de la base :

1
3 = 0.3333 . . .(10) = 0.1(3)
1
10 = 0.1(10) = 0.00011001100110011 . . .(2)
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Et les nombres rationnels ?

On pourrait représenter les nombres rationnels sous forme de fractions
irréductibles a

b avec a et b des entiers signés.

Avantage
Tout nombre réel peut être approché d’aussi près qu’on veut par des nombres
rationnels (densité).

Inconvénients
On ne peut pas borner la taille (nombre de chiffres) des numérateurs et
dénominateurs.

Conséquence : le coût des opérations élémentaires n’est pas constant (i.e. le
temps de calcul pour une addition peut varier en fonction des opérandes).
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Nombres à virgule flottante
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Nombres à virgule flottante

Pour un nombre fixé p de chiffres, on peut approcher un plus grand intervalle de
valeurs en utilisant la notation à virgule flottante : on place la virgule juste à
gauche du premier chiffre non nul et on multiplie par une puissance de la base.

La représentation se décompose alors en un signe, une mantisse et un exposant.

Flottants en base 10
nombre flottant signe mantisse exposant
0.0121 +0.121× 10−1 + 0.121 −1
−5837.25 −0.583725× 104 − 0.583725 4

Flottants en base 2
nombre flottant signe mantisse exp.
0.0121 +0.1100011000× 2−6 + 0.1100011000 −6
−5837.25 −0.101101100110101× 213 − 0.101101100110101 13
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Nombres à virgule flottante

En virgule flottante, en base b, un nombre réel x est représenté par :
un signe s ∈ {0, 1}
• 0 : positif
• 1 : négatif

une mantisse m, écrite en virgule fixe en base b sur p chiffres appelés digit,
sous la forme 0.d1d2d3d4 . . . dp.
un exposant e ∈ {emin, ..., emax},

x = (−1)s ×m × be

On dit que le nombre flottant x est de précision p (avec p ≥ 1).

Cas particulier de la base 2 : d1 vaut toujours 1 et n’a pas besoin d’être stocké
(bit implicite).
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Standardisation - IEEE 754

Avant les années 1980 : chaque fabricant utilisait sa propre représentation des
nombres flottants et de son arithmétique.
• Quelle base b était utilisée ? Avec quelle amplitude [emin, emax ] de l’exposant ?
• Un même code donnait des résultats différents sur différentes architectures de

processeur.
Besoin de standardisation en base 2.
• Fixer précisément le format des données et leur représentation.
• Définir le comportement et la précision des opérations de bases.
• Définir les valeurs spéciales, les modes d’arrondis et la gestion des exceptions.

En 1985 : publication du standard IEEE 754-1985.
En 2008 : révision du standard : IEEE 754-2008.
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Représentation standard des nombres flottants

IEEE 754
Simple précision Double précision

Précision p 24 53
Longueur de l’exposant e 8 11
Longueur de la représentation (p + e) 32 64
emin, emax −126, 127 −1022, 1023
Type C/C++ float double

Autres contributions du standard IEEE 754
Valeurs spéciales : −∞ (1/0), +∞ (−1/0), NaN (0/0), ...
Modes d’arrondi : vers +∞, −∞, 0, ou vers le flottant le plus proche.
Exceptions : opération invalide, dépassement (overflow), "soupassement"
(underflow), division par zéro, ...
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Nombres à virgule flottante : normaux et sous-normaux

Nombres normaux
Les nombres normaux sont ceux dont la représentation est celle vu
précédemment :

En base 10, la mantisse est de la forme m = 0.n1n2 . . . nm où ni est compris
entre 0 et 9 avec n1 non nul.
En base 2, c’est un peu différent, la mantisse est de la forme
m = 1.n1n2 . . . nm, où les ni sont dans {0, 1}. Le 1 avant la virgule n’est pas
codé, il est implicite.

Nombres sous-normaux
Afin d’avoir une meilleure répartition des nombres proches de 0, on définit les
nombres sous-normaux. Lorsque l’exposant est minimal (e = emin), on autorise la
mantisse à ne plus suivre le modèle des nombres normaux :

en base 10, n1 peut-être égal à 0 (par exemple, 0.0125× 10−12),
en base 2, la mantisse est de la forme m = 0.n1n2 . . . nm.

Attention aux performances dégradées avec les nombres sous-normaux (DEMO)
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Nombres à virgule flottant : limites

Propriétés et définitions
Plus petit nombre normal représentable : ε = ±0.1bemin

Plus petit nombre sous-normal représentable : ε = ±0.0 . . . 1bemin

Plus grand nombre représentable : M = ±0.(b − 1) . . . (b − 1)bemax

Dépassement de capacité : nombre plus petit que ε =⇒ débordement par valeur
inférieure (underflow) ; Nombre plus grand que M −→ débordement par valeur
supérieure (overflow).

Limites
Certains réels sont par définition impossibles à représenter en numération classique :
1/3, π ...
La représentation en un nombre fixe d’octets oblige le processeur à faire appel à des
approximations afin de représenter les réels (DEMO).
Le degré de précision de la représentation par virgule flottante des réels est
directement proportionnel au nombre de bits alloués à la mantisse, alors que le
nombre de bits alloués à l’exposant conditionnera l’amplitude de l’intervalle des
nombres représentables.
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Nombres à virgule flottante : plus loin ?

Et si on veut plus de précision ?
type long double, binary128, binary256, pas très normalisés . . .
Bibliothèques :
GNU MPFR (Gnu Multiple Precision)
http://www.mpfr.org/ (Paul Zimmermann, Inria Nancy).
Mais c’est forcément très lent.
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Quelques propriétés des nombres à virgule flottante

Les ensembles F (b, p, emin, emax ) des flottants décrivent seulement un
sous-ensemble fini des nombres réels. DeclareMathOperator

Arrondi
Si x ∈ F (b, p, emin, emax ), Arrondi(x) = x .
Si x /∈ F (b, p, emin, emax ) :

Arrondi(x) = nombre de F (b, p, emin, emax ) le plus proche de x .
Arrondi(x) = nombre de F (b, p, emin, emax ) immédiatement supérieur.
Arrondi(x) = nombre de F (b, p, emin, emax ) immédiatement inférieur.
Arrondi(x) = nombre de F (b, p, emin, emax ) le plus proche en direction de zéro.

DEMO

Unit in the Last Place (ULP)
Taille de l’intervalle séparant chaque nombre du nombre représentable le plus
proche (dans la direction opposée de celle de zéro.
DEMO

Lyon Calcul (CNRS / Institut Camille Jordan) Nombres, machines et calculs 21 Mars 2019 20 / 29



Arithmétique flottante
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Opérations sur les flottants

Opérations élémentaire
x + y −→ Arrondi(Arrondi(x) + Arrondi(y))
x − y −→ Arrondi(Arrondi(x)− Arrondi(y)) ...

Attention
Plusieurs propriétés de l’arithmétique (associativité, distributivité, ...) ne sont plus
valides en arithmétique flottante (DEMO) !

Conséquence : le même programme, compilé par deux compilateurs
(optimiseurs) différents ne donne pas toujours exactement le même résultat.
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Arithmétique flottante : conséquences

Arrondis - Anti-missile Patriot, 1991

Tics de l’horloge interne en 1/10s.
Temps écoulé mesuré en nombre de tics (entier).
Calcul de la position d’interception dépend du
temps = nombre de tic× 1/10 (erreur de
0.000000095 sur 1/10 en 24bits).
Après 100h de fonctionnement, vitesse de 1676m/s :
0.000000095× 100× 3600× 10× 1676 = 573m

Dépassement - Ariane 5, 1996

Vitesse horizontale en double convertie en entier
signé sur 16 bits.
Valeur supérieure à 32 767 =⇒ échec de la
conversion.
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Arithmétique flottante : annulation catastrophique
Catastrophic cancellation
Perte de précision qui résulte de la soustraction de deux nombres voisins.

Annulation catastrophique - Différences finies
Exemple pour l’approximation de la dérivée première par la méthode des
différences finies avec un pas d’espace h trop petit :

f ′(x) ≈ f (x + h)− f (x − h)
2h .

DEMO

Racines d’un polynôme du second degré
Résolution de ax3 + bx2 + c = 0 par la méthode classique :

∆ = b2 − 4ac puis x = ±b +
√

∆
2a .

DEMO
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Arithmétique flottante : erreurs d’arrondi

Calcul de récurrences
Calcul des termes de la suite :

un+1 = 4un − 1

avec u0 = 1/3.
DEMO

Calcul de récurrences
Calcul des termes de la suite :

un+1 = 3un − 1

avec u0 = 1/2.
DEMO

Lyon Calcul (CNRS / Institut Camille Jordan) Nombres, machines et calculs 21 Mars 2019 25 / 29



Arithmétique flottante : erreurs d’arrondi

Mais qu’est ce que cette histoire ? ? ?

Explication :
1 un+1 = 4un − 1 avec u0 = 1/3 :

1
3 = 1

4

∞∑
i=0

1
4i = 1

4

∞∑
i=0

1
22i ,

et donc u0 = 1/3 ne peut pas être représenté exactement en flottant. L’erreur
initiale est amplifiée...

2 un+1 = 3un − 1 avec u0 = 1/2.
En base 2 :

1/2 s’écrit 0.1,
3/2 s’écrit 1.1

donc le calcul est exact .
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Arithmétique flottante : que peut-on calculer ?
Stabilité aux perturbations
On ne peut effectuer que des calculs pour lesquels la solution dépend gentiment
des données (problèmes bien posés).

Les nombres à virgule flottante doivent être regardés avec méfiance, mais ils
n’ont pas empêché le développement du calcul et de ses applications : ce ne
sont pas les erreurs d’arrondi qui limitent la validité de la prévision
météorologique, pour ne citer que cet exemple.
La stabilité des algorithmes vis-à-vis des petites perturbations doit être
étudiée.

Exemple de problème mal posé (conditionnement élevé)
Résoudre de système linéaire Ax = b en prenant pour A la matrice de Hilbert de
taille n, avec Ai,j = 1/(i + j − 1) (DEMO).

La solution est dans Q : calcul exact si on a les moyens de calculer dans Q
(Exemple : bibliothèque Linbox)
On peut alors comparer la solution dans Q à la solution « flottante ».
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Nombres à virgule flottante : références bibliographiques

What every scientist should know about floating-point arithmetic. David
Goldberg.
Texte disponible à de nombreux endroits, entre autres à :
http://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf.
Handbook of Floating-Point Arithmetic, Muller et collaborateurs (ENS Lyon).
Calcul mathématique avec Sage. Casamayou, Alexandre et Connan,
Guillaume et Dumont, Thierry et Fousse, Laurent et Maltey, François et
Meulien, Matthias et Mezzarobba, Marc et Pernet, Clément et Thiéry,
Nicolas et Zimmermann, Paul.
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