
Résolution numérique de systèmes linéaires

Benoit Fabrèges

22 février 2018

Quelques références

• A. Quarteroni, R. Sacco, F. Saleri, Méthodes numériques :
Algorithmes, analyse et applications.
Niveau L3, avec des rappels. Disponible en pdf sur le site de la
bibliothèque.

• P. G. Ciarlet, Introduction à l’analyse numérique matricielle et à
l’optimisation.
Niveau L3-M1. Première partie sur les systèmes linéaires.

• G. H. Golub, C. F. Van Loan, Matrix computations.
Complet, plus compliqué.

Sommaire

Rappel sur les matrices

Conditionnement d’une matrice

Méthodes directes
Cas des matrices triangulaires
Méthode de Gauss et factorisation LU
Factorisation LDLT

Factorisation de Cholesky
Factorisation QR

Méthodes itératives
Jacobi, Gauss-Seidel et SOR
Les méthodes de gradient
Méthodes multigrilles

Problèmes aux valeurs propres
Méthode de la puissance
La méthode QR
La méthode de Jacobi

Sommaire

Rappel sur les matrices

Conditionnement d’une matrice

Méthodes directes
Cas des matrices triangulaires
Méthode de Gauss et factorisation LU
Factorisation LDLT

Factorisation de Cholesky
Factorisation QR

Méthodes itératives
Jacobi, Gauss-Seidel et SOR
Les méthodes de gradient
Méthodes multigrilles

Problèmes aux valeurs propres
Méthode de la puissance
La méthode QR
La méthode de Jacobi

Rappel sur les matrices

Quelques définitions :
• Une matrice A d’ordre n est dite inversible s’il existe une matrice B
d’ordre n telle que AB = BA = In (In est la matrice identité d’ordre
n).
Exemple : matrice de rotation d’angle θ

A =

(
cos θ − sin θ
sin θ cos θ

)
, B =

(
cos θ sin θ
− sin θ cos θ

)
• On appelle transposée d’une matrice A ∈ Rn×m la matrice m × n,
notée AT , obtenue en échangeant les lignes et les colonnes de A.
Exemple : pour une matrice générale de taille 2× 3

A =

(
a11 a12 a13
a21 a22 a23

)
, AT =

a11 a21
a12 a22
a13 a23



Rappel sur les matrices

• On a les relations suivantes :(
AT
)T

= A, (A + B)T = AT + BT ,

(AB)T = BTAT ,
(
A−1)T =

(
AT
)−1

= A−T

• Pour une matrice complexe A ∈ Cn×m, la matrice A
T
s’appelle la

matrice adjointe de A et est notée A∗.
On retrouve les propriétés de la transposée avec la matrice adjointe
dans le cas complexe.

Rappel sur les matrices

• Une matrice A ∈ Rn×n est dite symétrique si A = AT et
antisymétrique si A = −AT . Elle est dite orthogonale si
AAT = ATA = I , c’est-à-dire A−1 = AT .

• Une matrice A ∈ Cn×n est dite hermitienne ou autoadjointe si
A = A∗. Elle est dite normale si AA∗ = A∗A et unitaire si
AA∗ = A∗A = I , c’est-à-dire A−1 = A∗.
Exemple :

A =

 3 i 1− 5i
−i −2 5

1 + 5i 5 10



Déterminant d’une matrice

On appelle déterminant d’une matrice le scalaire suivant :

detA =
∑
π∈P

sign(π)a1π1a2π2 . . . anπn ,

où P est l’ensemble des n! multi-indices obtenus par permutation de
(1, . . . , n). Le coefficient (π) vaut 1 si on fait un nombre pair de
transpositions, −1 sinon.

On a les relations suivantes :
• detA = detAT , detA∗ = detA
• detAB = detA detB
• detA−1 = (detA)−1

• detαA = αn detA

Déterminant d’une matrice... à la main

• Soit A une matrice d’ordre n.
• On note Aij la matrice obtenue en éliminant la i-ème ligne et la
j-ième colonne de A. On appelle son déterminant le mineur associé
au coefficient aij de A.

• Le cofacteur de Aij est défini par ∆ij = (−1)i+j detAij .
• On a alors la relation de récurrence suivante :

detA =


a11 si n = 1
n∑

j=1

∆ijaij pour n > 1

• Une formule pour l’inverse d’une matrice :

A−1 =
1

detA
CT , cij = ∆ij

Déterminant d’une matrice... exemple
On considère la matrice de rotation en 3D suivante :

A =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


En développant par rapport à la dernière ligne :

detA = 0× (−1)3+1 det
(
− sin θ 0
cos θ 0

)
+ 0× (−1)3+2 det

(
cos θ 0
sin θ 0

)
+ 1× (−1)3+3 det

(
cos θ − sin θ
sin θ cos θ

)
= det

(
cos θ − sin θ
sin θ cos θ

)
= 1

Rang et noyau d’une matrice

Soit A une matrice rectangulaire de taille m × n.
• On appelle déterminant extrait d’ordre q, le déterminant de
n’importe quelle matrice d’ordre q obtenue à partir de A en
éliminant m − q lignes et n − q colonnes.

• Le rang de A, noté rg(A), est l’ordre maximum des déterminants
extraits non nuls de A.

• Le rang de A est la dimension de l’image de A :

Im(A) = {y ∈ Rm : y = Ax pour x ∈ Rn} .

• Le noyau de A est le sous-espace vectoriel défini par :

Ker(A) = {x ∈ Rn : Ax = 0} .

Relations sur le rang et le noyau d’une matrice

Soit A une matrice rectangulaire de taille m × n :
• rg(A∗) = rg(A),
• rg(A) + dim(Ker(A)) = n

Si A est une matrice carrée de Cn×n, les relations suivantes sont
équivalentes :
(i) A est inversible
(ii) detA 6= 0
(iii) Ker(A) = 0
(iv) rg(A) = n

(v) Les colonnes et les lignes de A sont linéairement indépendantes.

Cas particulier : les matrices diagonales et diagonales par
blocs

Les matrices diagonales sont des matrices dont tous les éléments sont
nuls, sauf, peut-être, ceux sur la diagonale.

• Le déterminant des matrices diagonales est le produit des éléments
diagonaux.

• L’inverse d’une matrice diagonale est diagonale dont les coefficients
sont les inverses de ceux de la matrice initiale.

Les matrices diagonales par blocs sont des matrices de la forme
D = diag(D1,D2, . . . ,Dk) où les Di sont des matrices carrées,
éventuellement de taille différentes.

• Le déterminant d’une matrice diagonale par blocs est le produit des
déterminants des blocs diagonaux.

• Exemple : la matrice de rotation en 3D précédente !

Cas particulier : les matrices triangulaires

Les matrices triangulaires sont des matrices carrées de la forme :

L =


l11 0 . . . 0
l21 l22 . . . 0
...

...
...

ln1 ln2 . . . lnn

 , ou U =


u11 u12 . . . u1n
0 u22 . . . u2n
...

...
...

0 0 . . . unn


• Le déterminant d’une matrice triangulaire est le produit de ses
éléments diagonaux.

• Il est facile de résoudre un système linéaire avec une matrice
triangulaire : 

1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10



x1
x2
x3
x4

 =


1
1
1
1



Valeurs et vecteurs propres
Soit A une matrice dans K n×n (K = R ou C).

• On dit que λ ∈ K est valeur propre de A s’il existe x ∈ K n non nul
tel que Ax = λx .

• Le vecteur x s’appelle vecteur propre de A.
• L’ensemble des valeurs propres de A s’appelle le spectre de A et se
note σ(A).

• On appelle polynôme caractéristique de A le polynôme
det(A− XIn).

• Les valeurs propres de A sont les racines du polynôme
caractéristique.

• On peut montrer que :

detA =
n∏

i=1

λi , tr(A) =
n∑

i=1

λi

• On appelle rayon spectral de A le plus grand des modules des
valeurs propres : ρ(A) = maxλ∈σ(A) |λ|

Librairies et softwares

• Trilinos (C++), PETSc (C) : très grosses librairies orientées sur la
résolution d’EDP. Structures de matrices et vecteurs en parallèle
(MPI), denses et creuses.

• Armadillo (C++) : librairie d’algèbre linéaire, structures de matrices
et vecteurs, denses et creuses.

• Eigen (C++, header only) : librairie d’algèbre linéaire, structures de
matrices et vecteurs, denses et creuses.

• Elemental (C++) : librairie d’algèbre linéaire, structures de
matrices et vecteurs, parallèle (MPI), denses et creuses.

• Python (numpy/scipy), Julia, Matlab, Scilab, R, Sage : ils ont
tous leurs structures de matrices et vecteurs.

• sur GPU : ViennaCL (C++, supporte OpenCL et CUDA),
cuSPARSE (Nvidia).

Sommaire

Rappel sur les matrices

Conditionnement d’une matrice

Méthodes directes
Cas des matrices triangulaires
Méthode de Gauss et factorisation LU
Factorisation LDLT

Factorisation de Cholesky
Factorisation QR

Méthodes itératives
Jacobi, Gauss-Seidel et SOR
Les méthodes de gradient
Méthodes multigrilles

Problèmes aux valeurs propres
Méthode de la puissance
La méthode QR
La méthode de Jacobi

Un exemple

On considère le système linéaire suivant :
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31

 , de solution


1
1
1
1



Un exemple

On considère le système linéaire suivant :
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31

 , de solution


1
1
1
1


Que devient la solution si on perturbe un peu le second membre ?

Un exemple

On considère le système linéaire suivant :
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31

 , de solution


1
1
1
1


Que devient la solution si on perturbe un peu le second membre ?

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



y1
y2
y3
y4

 =


32 + 0.1
23− 0.1
33 + 0.1
31− 0.1

 , de solution


9.2
−12.6
4.5
−1.1



Un exemple

On considère le système linéaire suivant :
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31

 , de solution


1
1
1
1


Et si on perturbe la matrice ?

Un exemple
On considère le système linéaire suivant :

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1
x2
x3
x4

 =


32
23
33
31

 , de solution


1
1
1
1


Et si on perturbe la matrice ?

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

+


0 0 0.1 0.2

0.08 0.04 0 0
0 −0.02 −0.11 0

−0.01 −0.01 0 0.02




z1
z2
z3
z4

 =


32
23
33
31


de solution 

−81
137
−34
22



Normes vectorielles

Soit v ∈ K n où K = R ou C. Les normes les plus utilisées sont les
suivantes :

‖v‖1 =
n∑

i=1

|vi |

‖v‖2 =

√√√√ n∑
i=1

|vi |2

‖v‖∞ = max
i
|vi |

Plus généralement, sur K n, pour p ≥ 1, l’application

‖v‖p =

(
n∑

i=1

|vi |p
)1/p

,

est une norme.

Normes matricielles

Étant donnée une norme vectorielle ‖.‖ sur Cn, l’application ‖.‖ définie
par :

‖A‖ = sup
v∈Cn,v 6=0

‖Av‖
‖v‖

= sup
v∈Cn,‖v‖≤1

‖Av‖ = sup
v∈Cn,‖v‖=1

‖Av‖

est une norme matricielle appelée norme matricielle subordonnée (à la
norme vectorielle associée).
Il résulte de la définition que ‖Av‖ ≤ ‖A‖‖v‖ pour tout v dans Cn.

Les normes matricielles subordonnées classiques

Soit A = (aij) une matrice carrée d’ordre n.

‖A‖1 = sup
‖Av‖1
‖v‖1

= max
j

∑
i

|aij |

‖A‖2 = sup
‖Av‖2
‖v‖2

=
√
ρ(A∗A) =

√
ρ(AA∗) = ‖A∗‖2

‖A‖∞ = sup
‖Av‖∞
‖v‖∞

= max
i

∑
j

|aij |

De plus, si A est normale, alors ‖A‖2 = ρ(A). Par conséquent, si A est
hermitienne, ou symétrique, on a aussi ‖A‖2 = ρ(A).

Norme de Frobenius

La norme ‖.‖E définie par :

‖A‖E =

√∑
i,j

|aij |2 =
√

tr(A∗A)

est une norme matricielle non subordonnée et qui vérifie

‖A‖2 ≤ ‖A‖E ≤
√
n‖A‖2

C’est la norme euclidienne. Elle a l’avantage, tout comme les normes ‖.‖1
et ‖.‖∞, d’être simple à calculer.

Retour aux perturbations

Soit A une matrice inversible, on veut comparer les solutions exactes des
deux systèmes linéaire suivant :

Au = b

A(u + δu) = b + δb

On a δu = A−1δb et b = Au. D’où,

‖δu‖ ≤ ‖A−1‖‖δb‖, ‖b‖ ≤ ‖A‖‖u‖.

Ainsi, on en déduit que :

‖δu‖
‖u‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

Retour aux perturbations

On peut faire de même avec les deux systèmes :

Au = b

(A + δA)(u + δu) = b

et on trouve l’inégalité suivante :

‖δu‖
‖u + δu‖

≤ ‖A‖‖A−1‖‖δA‖
‖A‖

Le conditionnement

Soit ‖.‖ une norme matricielle subordonnée et A une matrice inversible.
Le nombre

cond(A) = ‖A‖‖A−1‖

s’appelle le conditionnement de la matrice A, relativement à la norme
considérée.

Propriétés du conditionnement

(i) Pour toute matrice A, on a

cond(A) ≥ 1,

cond(A) = cond(A−1),

cond(αA) = cond(A)

(ii) Si A est normale, on a

cond2(A) =
maxi |λi (A)|
mini |λi (A)|

(iii) Si A est unitaire ou orthogonale, cond2(A) = 1

Retour sur l’exemple

La matrice de notre exemple,

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10


a pour valeur propre :

λ1 = 0.01015, λ2 = 0.8431, λ3 = 3.858, λ4 = 30.2887

de sorte que cond2(A) = λ4
λ1

= 2984
Par ailleurs, on a :

‖δu‖2
‖u‖2

= 8.1985 ≤ 9.9424 = cond2(A)
‖δb‖2
‖b‖2

Préconditionneurs

On considère le système linéaire Ax = b, avec A inversible. Soit P une
matrice inversible, la solution du système suivant :

P−1Ax = P−1b,

est la même que celle du premier système. La matrice P s’appelle un
préconditionneur à gauche. L’idée est de choisir P de telle sorte que
cond(P−1A) << cond(A).
Remarques :

• Le second système est en général résolu avec une méthode itérative,
qui ne nécessite pas le calcul de P−1.

• P = I est le préconditionneur le plus simple, mais n’a aucun effet.
• P = A est optimal, mais revient à résoudre le système non
préconditionné.

Propriétés d’un bon préconditionneur

Un bon préconditionneur doit :
• être facile à inverser (la résolution d’un système linéaire Pz = r est
peu couteuse).

• regrouper les valeurs propres de P−1A dans une petite partie du plan
complexe.

• pour une méthode itérative, de nécessiter un nombre d’itération pour
atteindre une précision donnée indépendant de la taille de la matrice
A.

Trouver un bon préconditionneur est un problème en soit ! Il n’existe pas
de méthodes pour en trouver.

Sommaire

Rappel sur les matrices

Conditionnement d’une matrice

Méthodes directes
Cas des matrices triangulaires
Méthode de Gauss et factorisation LU
Factorisation LDLT

Factorisation de Cholesky
Factorisation QR

Méthodes itératives
Jacobi, Gauss-Seidel et SOR
Les méthodes de gradient
Méthodes multigrilles

Problèmes aux valeurs propres
Méthode de la puissance
La méthode QR
La méthode de Jacobi

Système linéaire avec matrice triangulaire

On considère le système Ux = b avec U matrice triangulaire supérieure :

U =


u11 u12 . . . u1n
0 u22 . . . u2n
...

...
. . .

...
0 0 . . . unn



x1
x2
...
xn

 =


b1
b2
...
bn


Alors, on peut remonter la matrice et la solution est :

xi =
bi −

∑
j>i uijxj

uii
, i = n, . . . , 1

De façon similaire, on a la solution dans le cas d’une matrice triangulaire
inférieure.
La complexité d’une telle résolution est de l’ordre de n2 opérations.

Méthode d’élimination de Gauss

On considère le système linéaire Ax = b, avec A inversible. L’objectif est
de se ramener à un système de la forme Ux = b̃, avec U triangulaire
supérieure.
On pose A1 = A, b1 = b et on suppose que a11 6= 0. On transforme A1

en A2 de la façon suivante :

a2
ij = a1

ij −
a1
i1

a1
11
a1
1j , i , j = 2, . . . , n

b2
i = b1

i −
a1
i1

a1
11
b1

1, j = 2, . . . , n

On obtient un système de la forme :
a1
11 a1

12 . . . a1
1n

0 a2
22 . . . a2

2n
...

...
. . .

...
0 a2

n2 . . . a2
nn



x1
x2
...
xn

 =


b1

1
b2

2
...
b2
n



Méthode d’élimination de Gauss

En supposant akkk 6= 0 pour k = 2, . . . , n − 1, on recommence ce procédé
pour aboutir, lorsque k = n au système linéaire suivant :

a1
11 a1

12 . . . a1
1n

0 a2
22 . . . a2

2n
...

...
. . .

...
0 0 . . . annn



x1
x2
...
xn

 =


b1

1
b2

2
...
bnn


Il est alors facile de résoudre ce problème avec une remontée.
Le procédé d’élimination de Gauss a une complexité de l’ordre de 2n3/3.

Factorisation LU

La factorisation LU consiste à écrire A sous la forme d’un produit d’une
matrice triangulaire inférieure L par une matrice triangulaire supérieure U.

• Les opérations de la méthode de Gauss s’écrivent comme le produit
de matrices triangulaires inférieures bien choisies par A.

• On a donc, avec la méthode de Gauss, une matrice M, triangulaire
inférieure, telle que MA = U. Soit encore A = M−1U avec M−1

triangulaire inférieure et U triangulaire supérieure.
• La résolution de LUx = b s’effectue de la façon suivante :

1. On résout Ly = b par une descente,
2. On résout Ux = y par une remontée.

• Le coup de la factorisation est le même que celui de la méthode de
Gauss.

• Une fois calculée, on peut réutiliser la factorisation avec un second
membre différent.

Existence et unicité d’une factorisation LU

Soit A matrice d’ordre n. La décomposition A = LU avec
(i) L triangulaire inférieure dont les coefficients diagonaux sont 1,
(ii) U triangulaire supérieure,

existe et est unique si et seulement si les sous-matrices principales Ai de
A d’ordre i = 1, . . . , n − 1 sont inversibles.

Les conditions suivantes sont plus restrictives mais plus simples à vérifier :
La factorisation LU existe et est unique si :

• A est à diagonale dominante par ligne.
• ou A est à diagonale dominante par colonne, et dans ce cas on a
|lij | ≤ 1.

Changement de pivot

Pour améliorer la stabilité de la factorisation LU, on peut changer de
pivot si :

• le coefficient diagonal akkk est nul,
• le coefficient diagonal akkk est petit, ce qui entraîne des erreurs
numériques.

On peut rechercher le nouveau pivot :
• dans la colonne que l’on annule, c’est la méthode du pivot partiel.
On choisit l’élément le plus grand de la colonne et on permutte les
lignes.
On obtient alors la décomposition PA = LU où P est une matrice de
permutation. Pour résoudre Ax = b, on résout PAx = LUx = Pb

• dans la sous-matrice qu’il reste à traiter, c’est la méthode du pivot
total. On a alors PAQ = LU où Q est aussi une matrice de
permutation.

Librairies et softwares pour la méthode LU

• LAPACK (Fortran) : LU avec pivot partiel.
• MUMPS (Fortran) : Solver LU parallèle (OpenMP + MPI).
Interface Fortran et C.

• SuperLU (C) : Solver LU parallèle (OpenMP, MPI, CUDA).
Interface Fortran et C. LU avec pivot partiel.

• PaStiX, SuiteSparse : d’autres solver LU.
• Trilinos, PETSc : contiennent des interfaces avec des solvers LU
externes (aller voir la liste sur leurs sites web).

• Armadillo, Eigen, Elemental : contiennent une ou des méthodes
LU (pivot partiel, pivot total. Allez voir les documentations !).

• Python (scipy.linalg.lu), Julia (factorize, lufact), Matlab (lu),
Scilab (lu), R (LU, avec pivot partiel), Sage (LU).

• sur GPU, ViennaCL (sans pivot), cuSOLVER (pivot partiel).

Cas d’une matrice symétrique : factorisation LDLT

Soit A une matrice inversible dont tous les mineurs principaux sont non
nuls. Il existe une unique factorisation de A sous la forme A = LDMT

avec D diagonale, L triangulaire inférieure, MT triangulaire supérieure,
telles que L et M n’aient que des 1 sur leur diagonale.

Quelques remarques :
• Trouver la factorisation a le même coût que celui de la
décomposition LU.

• La résolution de Ax = b s’effectue en trois étapes :
1. résoudre Ly = b,
2. résoudre le système diagonal Dz = y ,
3. résoudre MT x = z .

• Si de plus A est symétrique, alors M = L et on a A = LDLT .
• Si A est symétrique, le coût de la factorisation est deux fois moindre
qu’une factorisation LU.

Librairies et softwares

• LAPACK : oui.
• MUMPS (Fortran) : Effectue une factorisation LDLT si on indique
que la matrice est symétrique.

• PaStiX, SuiteSparse : oui.
• Trilinos : à voir, pas clair.
• PETSc : oui, à travers MUMPS par exemple.
• Eigen : oui, voir http://eigen.tuxfamily.org/dox/group_
_TopicLinearAlgebraDecompositions.html

• Elemental : oui, voir http://libelemental.org/
documentation/0.85/lapack_like/factor.html

• Julia (factorize, ldltfact), Matlab (ldl).

http://eigen.tuxfamily.org/dox/group__TopicLinearAlgebraDecompositions.html
http://eigen.tuxfamily.org/dox/group__TopicLinearAlgebraDecompositions.html
http://libelemental.org/documentation/0.85/lapack_like/factor.html
http://libelemental.org/documentation/0.85/lapack_like/factor.html

Cas symétrique définie positive : factorisation de Cholesky

Soit A une matrice symétrique définie positive (symétrique, telle que
(Ax , x) > 0). Alors il existe une unique matrice H triangulaire supérieure
dont les termes diagonaux sont strictement positifs et telle que :

A = HTH

Cette factorisation s’appelle la factorisation de Cholesky

Quelques remarques :
• Les termes de H peuvent être calculés simplement (voir le livre de
Quarteroni et al par exemple).

• Le coût est deux fois moindre que pour une décomposition LU.
• Il est possible de stocker la matrice H et la matrice A dans la même
matrice (elles sont toutes les deux symétriques).

Librairies et softwares

• LAPACK : oui.
• MUMPS (Fortran) : oui.
• PaStiX, SuiteSparse : oui.
• Trilinos, PETSc : oui via les librairies externes.
• Armadillo, Eigen, Elemental : oui pour les trois.
• Python (numpy/scipy.linalg.cholesky), Julia (factorize, chol,
cholfact), Matlab (chol), Scilab (chol), R (chol), Sage (via numpy).

• sur GPU, cuSOLVER.

Factorisation QR

Étant donnée une matrice A d’ordre n, il existe une matrice unitaire Q et
une matrice triangulaire supérieure R telles que A = QR. De plus, on
peut s’arranger pour que tous les éléments diagonaux de R soient positifs
ou nuls.
Si la matrice A est inversible, la factorisation QR est alors unique.

Remarques :
• La méthode est numériquement stable, contrairement à LU sans
pivot.

• La décomposition nécessite environ deux fois plus d’opérations
qu’une méthode LU sans pivot.

• Sa construction, non décrite ici, est basée sur les matrices de
Householder (voir le livre de Ciarlet).

• Il n’y a pas d’hypothèses sur A.
• Si A est réelle, alors Q est rélle (donc orthogonale) et R aussi.
• Pour résoudre le système AX = b, il suffit de résoudre Rx = Q∗b.

Librairies et sofwares

• LAPACK : oui.
• SuiteSparse : oui.
• Trilinos : oui.
• PETSc : oui via l’interface avec Matlab...
• Armadillo, Eigen, Elemental : oui !
• Python (numpy/scipy.linalg.qr), Julia (factorize, qr, qrfact),

Matlab (qr), Scilab (qr), R (QR), Sage (QR).
• sur GPU, cuSOLVER.

Sommaire

Rappel sur les matrices

Conditionnement d’une matrice

Méthodes directes
Cas des matrices triangulaires
Méthode de Gauss et factorisation LU
Factorisation LDLT

Factorisation de Cholesky
Factorisation QR

Méthodes itératives
Jacobi, Gauss-Seidel et SOR
Les méthodes de gradient
Méthodes multigrilles

Problèmes aux valeurs propres
Méthode de la puissance
La méthode QR
La méthode de Jacobi

Méthodes itérative par recherche de point fixe

Soit A une matrice inversible, on veut résoudre le système Ax = b.

On suppose que l’on a trouvé une matrice B et un vecteur c tels que la
matrice I − B soit inversible et tels que la solution unique du système
(I − B)u = c est la même que celle du système Ax = b.

La forme (I − B)u = c , que l’on réécrit u = Bu + c , suggère de trouver
un point fixe à la fonction f (u) = Bu + c .
On se donne donc un vecteur initial arbitraire u0 et on définit la suite de
vecteur (uk)k≥0 par

uk+1 = Buk + c

On dit que la méthode est convergente si limk→∞ uk = u pour tout u0.

Critère de convergence

Pour une matrice B telle que (I − B) soit inversible, les propositions
suivantes sont équivalentes :
(i) La méthode itérative est convergente,
(ii) ρ(B) < 1,
(iii) ‖B‖ ≤ 1 pour au moins une norme matricielle ‖.‖.

Exemple de matrices B
Soit A inversible, on veut résoudre le système Ax = b.
On suppose que l’on peut écrire A sous la forme A = M − N avec M
inversible. On a donc :

Ax = b ⇐⇒ Mx = Nx + b ⇐⇒ x = M−1N︸ ︷︷ ︸
B

x + M−1b︸ ︷︷ ︸
c

On a, au passage,

I − B = I −M−1N = I − (I −M−1A) = M−1A,

et donc I − B est bien inversible.
La méthode itérative est donc :

uk+1 = M−1Nuk + M−1b

ce qui revient, en pratique, à résoudre les systèmes linéaires :

Muk+1 = Nuk + b

Quelques remarques

• On voit bien que la matrice M doit être facile à inverser.
• On peut réutiliser une factorisation de M à chaque itération
(factorisation LU par exemple).

• Le cas limite M = A (et donc N = 0) donne une méthode qui
converge en une itération. Mais cela revient à inverser A avec une
méthode directe, donc pas très utile.

• On résout donc en réalité le système (I − B)x = c = M−1b. On a
vu que I − B = M−1A, on résout donc le système

M−1Ax = M−1b

La matrice M est donc un préconditionneur de A ! On veut les
mêmes propriété pour M que celles pour un préconditionneur.

La méthode de Jacobi

On écrit A = D − E − F , avec :
• D la diagonale de A,
• −E la partie triangulaire inférieure de A

• −F la partie triangulaire supérieure de A

On prend alors M = D et N = E + F et on doit résoudre à chaque
itération :

Duk+1 = (E + F)uk + b

Comme M doit être inversible, il faut que les coefficient diagonaux de A
soient tous non nuls !

La méthode de Gauss-Seidel

On prend ici :

M = D − E

N = F

de sorte que les itérations s’écrivent :

(D − E)uk+1 = Fuk + b

La matrice D − E est triangulaire inférieure, et donc facile à inverser.

La méthode de relaxation (SOR)

C’est une variante de Gauss-Seidel. On considère un paramètre ω 6= 0 et
on prend

M =
D

ω
− E

N =
1− ω
ω

D + F

de sorte que les itérations s’écrivent :(
D

ω
− E

)
uk+1 =

(
1− ω
ω

D + F

)
uk + b

On retrouve Gauss-Seidel pour ω = 1.

Résultats de convergence

• On a vu que si ρ(M−1N) < 1, alors la méthode converge.
• Si A et 2D − A sont symétriques définies positives, alors la méthode
de Jacobi converge.

• Si A est symétrique définie positive, alors la méthode de
Gauss-Seidel est convergente de manière monotone (l’erreur décroit
à chaque itération) pour la norme ‖.‖A (si A est symétrique définie
positive, on définie ‖x‖A = (Ax , x)).

• Si A est une matrice à diagonale dominante stricte, alors les
méthodes de Jacobi et Gauss-Seidel convergent.

• Si ω ≤ 0 ou ω ≥ 2, la méthode SOR diverge.
• Si A est symétrique définie positive, la méthode SOR converge si et
seulement si 0 < ω < 2. Sa convergence est monotone pour ‖.‖A.

Les méthodes de Richardson

On écrit les itérations sous la forme :

M−1xk+1 = Nxk + b ⇐⇒ xk+1 = xk + M−1rk ,

où rk = b − Axk .
On peut, comme pour la méthode SOR, relaxer en introduisant un
paramètre α :

xk+1 = xk + αM−1rk ,

c’est la méthode de Richardson stationnaire.
Si le paramètre dépend de k :

xk+1 = xk + αkM
−1rk ,

c’est la méthode de Richardson instationnaire.

Algorithme

On se donne un x0 arbitraire et on pose r0 = b − Ax0. L’étape k s’écrit :
1. résoudre le système linéaire Mzk = rk

2. calculer le paramètre αk

3. mettre à jour la solution xk+1 = xk + αkzk

4. mettre à jour le résidu rk+1 = rk − αkAzk

Comment choisir α ?

Voici un résultat, non utilisable en pratique, garantissant la convergence
de la méthode de Richardson :

Si les valeurs propres de M−1A sont strictement positives et telles que
λ1 ≥ λ2 ≥ . . . ≥ λn, alors la méthode de Richardson stationnaire est
convergente si et seulement si 0 < α < 2/λ1.
De plus,

αopt =
2

λ1 + λn

est le coefficient optimal.

Gradient à pas constant et optimal

On considère ici que la matrice A est symétrique définie positive.
Résoudre le système linéaire Ax = b revient dans ce cas à minimiser la
fonctionnelle

φ(y) =
1
2
yTAy − yTb

Partant d’un point x0 arbitraire, on ne connait pas la direction x − x0
On peut donc, de façon itérative, choisir une direction de descente pk et
une distance αk de laquelle se déplacer à partir d’une position xk .

• Le nouveau point sera donc de la forme xk+1 = xk + αk rk .
• La direction peut être la direction de plus grande pente de φ au
point xk , qui est −∇φ(xk) = b − Axk = rk .

• Prendre αk constant constitue la méthode de gradient à pas simple
• On peut minimiser la fonctionnelle le long des xk+1 possible. On

obtient la valeur

αk =
rTk rk
rTk Ark

C’est la méthode de gradient à pas optimal.

Algorithmes

Les deux algorithmes sont donc,

Etant donné x0, poser r0 = b − Ax0 et, pour k = 0, . . .,

αk =
rTk rk
rTk Ark

,

xk+1 = xk + αk rk ,

rk+1 = rk − αkArk

Dans le cas du gradient à pas simple, il n’y a pas besoin de calculer αk

puisqu’il est constant.
On peut voir ces méthodes comme des méthodes de Richardson non
préconditionnée (i.e. M = I).

Résultat de convergence

Soit A une matrice symétrique définie positive, alors la méthode de
gradient à pas optimal est convergente pour n’importe quelle donnée
initiale x0 et on a

‖xk+1 − x‖A ≤
cond2(A)− 1
cond2(A) + 1

‖xk − x‖A

par conséquent, si le conditionnement de A est grand, la méthode est
lente à converger.

Méthode de gradient préconditionnée

Les méthodes de gradient sont des méthodes de Richardson.
On peut refaire la même analyse en prenant une matrice M inversible,
symétrique définie positive. On obtient des méthodes de gradient
préconditionnée. Le pas optimal dans ce cas est :

αk =
zTk rk
zTk Azk

où zk est celui de l’algorithme de Richardson (Mzk = rk).
Dans ces conditions, on a l’estimation :

‖xk+1 − x‖A ≤
cond2(M−1A)− 1
cond2(M−1A) + 1

‖xk − x‖A

Méthode du gradient conjugué

Au lieu de prendre la direction de plus grande pente dans la méthode du
gradient, on peut choisir une direction conjuguée aux précédentes.
Ce sont des directions A-orthogonales les unes aux autres
(pTi Apj = 0, i 6= j).
On obtient alors l’algorithme du gradient conjugué : soit x0, on pose
r0 = b − Ax0 et p0 = r0.

αk =
pTk rk
pTk Apk

,

xk+1 = xk + αkpk ,

rk+1 = rk − αkApk ,

βk =
pTk Ark+1

pTk Apk
,

pk+1 = rk+1 − βkpk .

Convergence du gradient conjugué

Soit A une matrice symétrique définie positive d’ordre n. Toute méthode
qui utilise des directions conjuguées pour résoudre Ax = b conduit à la
solution exacte en au plus n itérations.

Soit A une matrice symétrique définie positive. La méthode du gradient
conjuguée converge en au plus n itérations et on a :

‖xk − x‖A ≤
2ck

1 + c2k ‖x0 − x‖A, c =

√
cond2(A)− 1√
cond2(A) + 1

Généralisation

Il existe des méthodes plus générales, dans le même esprit que le gradient
conjuguée. On les appelle des méthodes de Krylov. Le gradient conjugué
en fait partie.
En voici quelques unes :

• MINRES : Fonctionne sur des matrices symétriques. Elle est un peu
plus coûteuse qu’un gradient conjugué mais finit aussi en n
itérations maximum.

• GMRES : Fonctionne sur tout type de matrice. Coûteuse en
mémoire et effectue plus de calculs qu’un gradient conjugué.

• BiCGStab : Fonctionne pour des matrices non nécessairement
symétriques.

Librairies et softwares

• Trilinos, PETSc : possèdent tous les deux des solveurs utilisant des
méthodes de Krylov préconditionnées.

• Python (dans scipy), Matlab (cg, gmres, ...), Scilab (conjgrad,
gmres), R (CG, gmres), Sage (avec python).

• sur GPU, ViennaCL (CG, GMRES, BiCGStab).

Les méthodes multigrilles

Il existe énormément de méthodes multigrilles. On peut en distinguer
deux types : les multigrilles géométriques et algébriques.
Le principe est le même. Voici un exemple d’un multigrille :

• On régularise le vecteur initial (en pratique en effectuant quelques
itérations de Gauss Seidel par exemple).

• On reduit la matrice en enlevant des lignes et des colonnes bien
choisies.

• On recommence les deux étapes précédentes un certain nombre de
fois, choisi par l’utilisateur.

• Une fois arrivé à une matrice de taille petite, on résout le problème
linéaire (avec une méthode directe par exemple).

• On interpole le résultat sur la grille plus fine précédente.
• On régularise la solution.
• On recommence les deux étapes précédentes jusqu’à revenir à la
grille initiale.

Multigrille géométrique

• Les multigrilles géométrique se base sur une certaine géométrie.
• Dans le cas de la résolution d’EDP par exemple, on peut calculer la
matrice du problème sur un maillage deux fois plus fin à chaque fois.

• Les maillages cartésiens sont très bien adaptés à ce genre de
méthode par exemple.

• Ces méthodes ont beaucoup de paramètres, pas toujours simple à
choisir, mais elles donnent de bons résultats quand ça marche.

Multigrille algébrique

• Ces méthodes n’ont pas d’informations autre que la matrice.
• Elles suppriment des lignes et des colonnes pour changer de grille de
façon automatique.

• Très simple d’utilisation, il y a peu de paramètres.
• Peut fonctionner très bien sur certains problèmes.

Librairies et softwares

• Trilinos : ML, MueLu
• PETSc : Leur propre multigrille, ML, Hypre
• Hypre : Plusieurs multigrilles possibles. Orienté résolution d’EDP.
• Python : paquet pyamg par exemple.
• sur GPU, AmgX (CUDA).

Sommaire

Rappel sur les matrices

Conditionnement d’une matrice

Méthodes directes
Cas des matrices triangulaires
Méthode de Gauss et factorisation LU
Factorisation LDLT

Factorisation de Cholesky
Factorisation QR

Méthodes itératives
Jacobi, Gauss-Seidel et SOR
Les méthodes de gradient
Méthodes multigrilles

Problèmes aux valeurs propres
Méthode de la puissance
La méthode QR
La méthode de Jacobi

Méthode de la puissance

Soit A une matrice complexe diagonalisable d’ordre n. On suppose que
les valeurs propres sont ordonnées de la façon suivante :

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|

Étant donné un vecteur initial arbitraire q0 de norme euclidienne 1, on
considère l’algorithme itératif suivant :

zk = Aqk−1

qk =
zk
‖zk‖2

νk = q∗kAqk

Sous certaines conditions, le vecteur qk s’aligne sur le premier vecteur
propre x1 et νk converge vers la première valeur propre λ1.

Convergence de la méthode de la puissance

Soit A une matrice complexe diagonalisable d’ordre n, dont les valeurs
propres sont ordonnées comme précédemment. Soit xi les vecteurs
propres de A. Ils forment une base sur laquelle on décompose
q0 =

∑
i αixi . Si α1 6= 0, il existe une constante C > 0 telle que,

‖q̃k − x1‖2 ≤ C

∣∣∣∣λ2

λ1

∣∣∣∣k , k ≤ 1,

où

q̃k = ckqk , ck =
‖Akq0‖2
α1λk1

Méthode de la puissance inverse

En appliquant la méthode de la puissance à A−1, on peut trouver la
valeur propre de plus petit module de A (en supposant qu’elle est simple).
Plus généralement, on peut appliquer la méthode de la puissance à
(A− µI)−1 pour trouver la valeur propre de A la plus proche de µ (en
supposant qu’elle est aussi de multiplicité 1).
L’algorithme est le suivant :

(A− µI)zk = qk−1

qk =
zk
‖zk‖2

νk = q∗kAqk

On résout donc un système linéaire à chaque itération.

Le principe des méthodes QR

L’idée est, tout commme pour les sytèmes linéaires, de se ramener à une
matrice dont les valeurs propres sont connues. Par exemple, une matrice
triangulaire !
L’algorithme est le suivant :

Soit A une matrice réelle d’ordre n. On se donne Q0 une matrice
orthogonale et on pose T0 = QT

0 AQ0. Pour k=1,. . . ,
1. déterminer Qk et Rk telle que Tk−1 = QkRk (factorisation QR).
2. poser Tk = RkQk .

Remarques :
• Pour la méthode QR basique, on utilise Q0 = In.
• Il peut ne pas y avoir convergence vers une matrice triangulaire.

Convergence de la méthode QR

Soit A une matrice réelle d’ordre n telle que

|λ1| > |λ2| > . . . > |λn|

Alors

lim
k→∞

Tk =


λ1 t12 . . . t1n
0 λ2 t23 . . .
...

...
. . .

...
0 0 . . . λn


Le taux de convergence est de la forme

|tki,i−1| = O

(∣∣∣∣ λiλi−1

∣∣∣∣k
)
.

Si on suppose de plus A symétrique, la suite Tk tend vers une matrice
diagonale.

Optimisation de la méthode QR

• La méthode QR classique demande n3 opérations à chaque
itérations !

• Il est possible de partir d’une matrice T0 bien choisie pour réduire ce
coût de calcul. Ce sont des matrices de type Hessenberg supérieures
(telle que tij = 0 dans la partie triangulaire inférieure).

• La factorisation QR peut alors être effectuée en moins d’opérations
(de l’ordre de n2 opérations).

• Lorsque les valeurs propres sont proches les unes des autres, la
convergence de la méthode peut être très lente. Pour l’améliorer, on
applique le même principe que pour la méthode de la puissance
inverse en effectuant des translations. C’est la méthode QR avec
translation.

Cas des matrices symétriques

Si la matrice A est symétrique, la méthode de Jacobi prend en compte
cette information.
On pose A0 = A et on va construire une suite de matrice Ak ,
orthogonalement semblables à la matrice A, tendant vers une matrice
diagonale dont les coefficients sont les valeurs propres de A.

1. Pour k = 1, . . ., on se donne deux indices p et q tels que
1 ≤ p < q ≤ n.

2. On pose Gpq = G (p, q, θ) matrice de Givens de paramètre θ (ce sont
des matrices de rotation d’angle θ dans le plan des indices (p, q)).

3. On choisit θ de sorte que Ak = GT
pqAk−1Gpq vérifie akpq = 0.

Le calcul du θ est automatique à chaque itération.

Librairies et softwares

• Arpack (Fortran) : Résolution de gros problèmes aux valeurs propres
avec matrices creuses.

• Trilinos : Anasazi permet de résoudre des problèmes aux valeurs
propres.

• SLEPc : basé sur PETSc, librairie dédiée à la résolution de
problèmes aux valeurs propres.

• Armadillo, Eigen, Elemental : oui, contiennent tous des solveurs
pour les problèmes aux valeurs propres.

• Python (numpy / scipy), Julia (oui, eig* et d’autres), Matlab (eig,
eigs, ...), Scilab (eig, ...), R (eig), Sage (oui).

