
Nombres, machines, calculs

Roland Denis (Thierry Dumont)
Institut Camille Jordan, Lyon.

8 Février 2018



Nombres
Avec quels nombres peut-on calculer ?

I N, entiers naturels : {0, 1, . . .},
I Z, entiers relatifs : {. . . ,−2,−1, 0, 1, 2, . . .},
I Q, rationnels : a/b avec a ∈ Z, b ∈ Z∗,
I R, nombres réels.
I C, nombres complexes.

Quelles représentations en machine ? Que peut-on représenter ?



I N et Z : p = 32 ou p = 64 bits avec un bit de signe (Z) ou
non signés N.

Seuls les nombres compris entre −2p−1 + 1 et 2p−1 − 1 (cas
signé) ou −2p + 1 et 2p − 1 (cas non signé) sont
représentables.

Comment faire pour représenter de grands entiers ?
Représenter les entiers sur plusieurs mots (sur plusieurs entiers
machine). => lent ! (exemple : bibliothèque gmp, beaucoup
utilisée en cryptographie et théorie des nombres).

I Q, rationnels. Représentation par paires d’entiers signés
(réduction).



I N et Z : p = 32 ou p = 64 bits avec un bit de signe (Z) ou
non signés N.

Seuls les nombres compris entre −2p−1 + 1 et 2p−1 − 1 (cas
signé) ou −2p + 1 et 2p − 1 (cas non signé) sont
représentables.

Comment faire pour représenter de grands entiers ?
Représenter les entiers sur plusieurs mots (sur plusieurs entiers
machine). => lent ! (exemple : bibliothèque gmp, beaucoup
utilisée en cryptographie et théorie des nombres).

I Q, rationnels. Représentation par paires d’entiers signés
(réduction).



I N et Z : p = 32 ou p = 64 bits avec un bit de signe (Z) ou
non signés N.

Seuls les nombres compris entre −2p−1 + 1 et 2p−1 − 1 (cas
signé) ou −2p + 1 et 2p − 1 (cas non signé) sont
représentables.

Comment faire pour représenter de grands entiers ?

Représenter les entiers sur plusieurs mots (sur plusieurs entiers
machine). => lent ! (exemple : bibliothèque gmp, beaucoup
utilisée en cryptographie et théorie des nombres).

I Q, rationnels. Représentation par paires d’entiers signés
(réduction).



I N et Z : p = 32 ou p = 64 bits avec un bit de signe (Z) ou
non signés N.

Seuls les nombres compris entre −2p−1 + 1 et 2p−1 − 1 (cas
signé) ou −2p + 1 et 2p − 1 (cas non signé) sont
représentables.

Comment faire pour représenter de grands entiers ?
Représenter les entiers sur plusieurs mots (sur plusieurs entiers
machine). => lent ! (exemple : bibliothèque gmp, beaucoup
utilisée en cryptographie et théorie des nombres).

I Q, rationnels. Représentation par paires d’entiers signés
(réduction).



I N et Z : p = 32 ou p = 64 bits avec un bit de signe (Z) ou
non signés N.

Seuls les nombres compris entre −2p−1 + 1 et 2p−1 − 1 (cas
signé) ou −2p + 1 et 2p − 1 (cas non signé) sont
représentables.

Comment faire pour représenter de grands entiers ?
Représenter les entiers sur plusieurs mots (sur plusieurs entiers
machine). => lent ! (exemple : bibliothèque gmp, beaucoup
utilisée en cryptographie et théorie des nombres).

I Q, rationnels. Représentation par paires d’entiers signés
(réduction).



Calculer avec les nombres rationnels ?
Pour :

I Tout nombre réel peut être approché d’aussi près qu’on veut
par des nombres rationnels.

Contre :

I On ne peut pas borner la taille (nombre de chiffres) des
numérateurs et dénominateurs.

Conséquence : le coût des opérations élémentaires n’est pas
constant.



Calculer avec les nombres rationnels ?
Pour :

I Tout nombre réel peut être approché d’aussi près qu’on veut
par des nombres rationnels.

Contre :

I On ne peut pas borner la taille (nombre de chiffres) des
numérateurs et dénominateurs.

Conséquence : le coût des opérations élémentaires n’est pas
constant.



Calculer avec les nombres rationnels ?
Pour :

I Tout nombre réel peut être approché d’aussi près qu’on veut
par des nombres rationnels.

Contre :

I On ne peut pas borner la taille (nombre de chiffres) des
numérateurs et dénominateurs.

Conséquence : le coût des opérations élémentaires n’est pas
constant.



Coût des algorithmes

Coût des algorithmes :
nombre d’opérations élémentaires pour résoudre un problème.

Il faut s’entendre sur ce qu’est une opération élémentaire !

Exemple : système linéaire de n équations à n inconnues Ax = B ,
par la méthode de Gauss :

I même coût pour toutes les opérations : C n3,
I dans Q : coût non polynomial.



Coût des algorithmes

Coût des algorithmes :
nombre d’opérations élémentaires pour résoudre un problème.

Il faut s’entendre sur ce qu’est une opération élémentaire !

Exemple : système linéaire de n équations à n inconnues Ax = B ,
par la méthode de Gauss :

I même coût pour toutes les opérations : C n3,
I dans Q : coût non polynomial.



Coût des algorithmes

Coût des algorithmes :
nombre d’opérations élémentaires pour résoudre un problème.

Il faut s’entendre sur ce qu’est une opération élémentaire !

Exemple : système linéaire de n équations à n inconnues Ax = B ,
par la méthode de Gauss :

I même coût pour toutes les opérations : C n3,
I dans Q : coût non polynomial.



Vers les nombres flottants
Il est impossible de représenter exactement tous les nombres réels
avec une quantité d’information finie !

Exemple : Un nombre normal est un nombre réel tel que la
fréquence d’apparition de tout n-uplet dans la suite de ses
« décimales » dans toute base est équirépartie.



Vers les nombres flottants
Il est impossible de représenter exactement tous les nombres réels
avec une quantité d’information finie !

Exemple : Un nombre normal est un nombre réel tel que la
fréquence d’apparition de tout n-uplet dans la suite de ses
« décimales » dans toute base est équirépartie.



Vers les nombres flottants
Comment représenter les nombres réels de manière approchée avec
une quantité d’information fixe ?
Consensus pour utiliser les nombres à virgule flottante.



Nombres à virgule flottante
Exemple : flottants en base 10.

0.0121 => +0.121 10−1

−5837.25 => −0.583725 104

(signe) (mantisse) (exposant)

+ 121 −1
− 583725 4

La mantisse commence par le premier chiffre non nul, en
commençant par la gauche.



Nombres à virgule flottante
Exemple : flottants en base 10.

0.0121 => +0.121 10−1

−5837.25 => −0.583725 104

(signe) (mantisse) (exposant)

+ 121 −1
− 583725 4

La mantisse commence par le premier chiffre non nul, en
commençant par la gauche.



Nombres à virgule flottante
Exemple : flottants en base 10.

0.0121 => +0.121 10−1

−5837.25 => −0.583725 104

(signe) (mantisse) (exposant)

+ 121 −1
− 583725 4

La mantisse commence par le premier chiffre non nul, en
commençant par la gauche.



Nombres à virgule flottante
Ensemble F (β, r ,m,M) de nombres à virgule flottante :

I une base β ≥ 2,
I un nombre de chiffres r ,
I deux entiers relatifs m et M.

x = (−1)s 0.d1d2 . . . dr · βj ,

I les chiffres di sont des nombres entiers qui vérifient 0 ≤ di < β
pour i > 1 et 0 < d1 < β.

I Le nombre de chiffres r est la précision.
I l’indicateur de signe s vaut 0 ou 1.
I L’exposant j est compris entre les deux entiers m et M.
I 0.d1d2 . . . dr est la mantisse.



Nombres à virgule flottante
Ensemble F (β, r ,m,M) de nombres à virgule flottante :

I une base β ≥ 2,
I un nombre de chiffres r ,
I deux entiers relatifs m et M.

x = (−1)s 0.d1d2 . . . dr · βj ,

I les chiffres di sont des nombres entiers qui vérifient 0 ≤ di < β
pour i > 1 et 0 < d1 < β.

I Le nombre de chiffres r est la précision.
I l’indicateur de signe s vaut 0 ou 1.
I L’exposant j est compris entre les deux entiers m et M.
I 0.d1d2 . . . dr est la mantisse.



Nombres à virgule flottante
Ensemble F (β, r ,m,M) de nombres à virgule flottante :

I une base β ≥ 2,
I un nombre de chiffres r ,
I deux entiers relatifs m et M.

x = (−1)s 0.d1d2 . . . dr · βj ,

I les chiffres di sont des nombres entiers qui vérifient 0 ≤ di < β
pour i > 1 et 0 < d1 < β.

I Le nombre de chiffres r est la précision.

I l’indicateur de signe s vaut 0 ou 1.
I L’exposant j est compris entre les deux entiers m et M.
I 0.d1d2 . . . dr est la mantisse.



Nombres à virgule flottante
Ensemble F (β, r ,m,M) de nombres à virgule flottante :

I une base β ≥ 2,
I un nombre de chiffres r ,
I deux entiers relatifs m et M.

x = (−1)s 0.d1d2 . . . dr · βj ,

I les chiffres di sont des nombres entiers qui vérifient 0 ≤ di < β
pour i > 1 et 0 < d1 < β.

I Le nombre de chiffres r est la précision.
I l’indicateur de signe s vaut 0 ou 1.

I L’exposant j est compris entre les deux entiers m et M.
I 0.d1d2 . . . dr est la mantisse.



Nombres à virgule flottante
Ensemble F (β, r ,m,M) de nombres à virgule flottante :

I une base β ≥ 2,
I un nombre de chiffres r ,
I deux entiers relatifs m et M.

x = (−1)s 0.d1d2 . . . dr · βj ,

I les chiffres di sont des nombres entiers qui vérifient 0 ≤ di < β
pour i > 1 et 0 < d1 < β.

I Le nombre de chiffres r est la précision.
I l’indicateur de signe s vaut 0 ou 1.
I L’exposant j est compris entre les deux entiers m et M.
I 0.d1d2 . . . dr est la mantisse.



Virgule flottante
Pas si neuf...

Selon D. Knuth, les Babyloniens utilisaient un système de virgule
flottante en base 60 !



Nombres à virgule flottante, et norme IEE
Bien sûr on ne stocke que s, d1d2 . . . dr et j .
Cas particulier de la base 2 : d1 vaut toujours 1 et n’a pas besoin
d’être stocké.

Norme IEE 754

1985.
Définit plusieurs types de flottants.
Exemple : nombres stockés sur 64 bits (« double précision ») :

I le signe s est codé sur 1 bit,
I la mantisse sur 53 bits (dont 52 seulement sont stockés),
I l’exposant sur 11 bits.

Les nombres sont donc de la forme :

(−1)s 0.d1d2 . . . d53 · 2j−1023.

Ils correspondent au type double du langage C.



Nombres à virgule flottante, et norme IEE
Bien sûr on ne stocke que s, d1d2 . . . dr et j .
Cas particulier de la base 2 : d1 vaut toujours 1 et n’a pas besoin
d’être stocké.

Norme IEE 754

1985.
Définit plusieurs types de flottants.
Exemple : nombres stockés sur 64 bits (« double précision ») :

I le signe s est codé sur 1 bit,
I la mantisse sur 53 bits (dont 52 seulement sont stockés),
I l’exposant sur 11 bits.

Les nombres sont donc de la forme :

(−1)s 0.d1d2 . . . d53 · 2j−1023.

Ils correspondent au type double du langage C.



Nombres à virgule flottante, et norme IEE
Bien sûr on ne stocke que s, d1d2 . . . dr et j .
Cas particulier de la base 2 : d1 vaut toujours 1 et n’a pas besoin
d’être stocké.

Norme IEE 754

1985.
Définit plusieurs types de flottants.
Exemple : nombres stockés sur 64 bits (« double précision ») :

I le signe s est codé sur 1 bit,
I la mantisse sur 53 bits (dont 52 seulement sont stockés),
I l’exposant sur 11 bits.

Les nombres sont donc de la forme :

(−1)s 0.d1d2 . . . d53 · 2j−1023.

Ils correspondent au type double du langage C.



Nombres à virgule flottante : normaux et sous-normaux

Nombres normaux
Les nombres normaux sont ceux dont la représentation est celle vu
précédemment :

I En base 10, la mantisse est de la forme m = 0, n1n2...nm où ni
est compris entre 0 et 9 avec n1 non nul.

I En base 2, c’est un peu différent, la mantisse est de la forme
m = 1, n1n2...nm, où les ni sont dans {0, 1}. Le 1 avant la
virgule n’est pas codé, il est implicite.

Nombres sous-normaux
Afin d’avoir une meilleure répartition des nombres proches de 0, on
définit les nombres sous normaux. Lorsque l’exposant est minimal
(e = emin), on autorise la mantisse à ne plus suivre le modèle des
nombres normaux :

I en base 10, n1 peut-être égal à 0,
I en base 2, la mantisse est de la forme m = 0, n1n2...nm.



Nombres à virgule flottant : limites
Propriétés et définitions

I Plus petit nombre normal représentable : ε = ±0.1βemin

I Plus petit nombre sous normal représentable : ε = ±0.0 . . . 1βemin

I Plus grand nombre représentable : M = ±0.(β − 1) . . . (β − 1)βemax

I Dépassement de capacité : nombre plus petit que ε =⇒
débordement par valeur inférieure (underflow) ; Nombre plus grand
que M −→ débordement par valeur supérieure (overflow).

Limites
I Certains réels sont par définition impossibles à représenter en

numération classique : 1/3, π ...

I La représentation en un nombre fixe d’octets oblige le processeur à
faire appel à des approximations afin de représenter les réels.

I Le degré de précision de la représentation par virgule flottante des
réels est directement proportionnel au nombre de bits alloués à la
mantisse, alors que le nombre de bits alloués à l’exposant
conditionnera l’amplitude de l’intervalle des nombres représentables.



Nombres à virgule flottante
Et si on veut plus de précision ?

I type long double pas très normalisé.
I Bibliothèques :

GNU MPFR (Gnu Multiple Precision) http://www.mpfr.org/
(Paul Zimmermann, Inria Nancy).
Mais c’est forcément très lent.

Note : si vous compilez GCC il vous faut mpfr. Sert à évaluer des
expressions constantes à la compilation
(Exemple : double pi=4.0 * atan(1.0)).

http://www.mpfr.org/


Nombres à virgule flottante
Et si on veut plus de précision ?

I type long double pas très normalisé.
I Bibliothèques :

GNU MPFR (Gnu Multiple Precision) http://www.mpfr.org/
(Paul Zimmermann, Inria Nancy).
Mais c’est forcément très lent.

Note : si vous compilez GCC il vous faut mpfr. Sert à évaluer des
expressions constantes à la compilation
(Exemple : double pi=4.0 * atan(1.0)).

http://www.mpfr.org/


Quelques propriétés des nombres à virgule flottante
Les ensembles F (β, r ,m,M) décrivent seulement un sous-ensemble
fini des nombres réels.

Arrondi :
I Si x ∈ F (β, r ,m,M), Arrondi(x) = x .
I Si x /∈ F (β, r ,m,M) :

I Arrondi(x) = nombre de F (β, r ,m,M) le plus proche de x .
I Arrondi(x) = nombre de F (β, r ,m,M) immédiatement

supérieur.
I Arrondi(x) = nombre de F (β, r ,m,M) immédiatement

inférieur.
I Arrondi(x) = nombre de F (β, r ,m,M) le plus proche en

direction de zéro.

ULP

Unit in the last place.
Taille de l’intervalle séparant chaque nombre du nombre
représentable le plus proche (dans la direction opposée de celle de
zéro.demo



Quelques propriétés des nombres à virgule flottante
Les ensembles F (β, r ,m,M) décrivent seulement un sous-ensemble
fini des nombres réels.

Arrondi :
I Si x ∈ F (β, r ,m,M), Arrondi(x) = x .
I Si x /∈ F (β, r ,m,M) :

I Arrondi(x) = nombre de F (β, r ,m,M) le plus proche de x .
I Arrondi(x) = nombre de F (β, r ,m,M) immédiatement

supérieur.
I Arrondi(x) = nombre de F (β, r ,m,M) immédiatement

inférieur.
I Arrondi(x) = nombre de F (β, r ,m,M) le plus proche en

direction de zéro.

ULP

Unit in the last place.
Taille de l’intervalle séparant chaque nombre du nombre
représentable le plus proche (dans la direction opposée de celle de
zéro.demo



Quelques propriétés des nombres à virgule flottante
Les ensembles F (β, r ,m,M) décrivent seulement un sous-ensemble
fini des nombres réels.

Arrondi :
I Si x ∈ F (β, r ,m,M), Arrondi(x) = x .
I Si x /∈ F (β, r ,m,M) :

I Arrondi(x) = nombre de F (β, r ,m,M) le plus proche de x .
I Arrondi(x) = nombre de F (β, r ,m,M) immédiatement

supérieur.
I Arrondi(x) = nombre de F (β, r ,m,M) immédiatement

inférieur.
I Arrondi(x) = nombre de F (β, r ,m,M) le plus proche en

direction de zéro.

ULP

Unit in the last place.
Taille de l’intervalle séparant chaque nombre du nombre
représentable le plus proche (dans la direction opposée de celle de
zéro.demo



Quelques propriétés des nombres à virgule flottante

L’annulation catastrophique. (Catastrophic
cancellation)

C’est le diable !..

Perte de précision qui résulte de la soustraction de deux nombres
voisins. démo

Êtes vous sûrs de savoir calculer les racines d’un trinôme du second
degré ? démo

Exercice :
Envisager tous les cas possibles pour le choix de a, b et c :
l’écriture d’un programme numériquement robuste pour le calcul
des racines d’un trinôme du second degré est loin d’être simple.



Quelques propriétés des nombres à virgule flottante

L’annulation catastrophique. (Catastrophic
cancellation)

C’est le diable !..

Perte de précision qui résulte de la soustraction de deux nombres
voisins. démo

Êtes vous sûrs de savoir calculer les racines d’un trinôme du second
degré ? démo

Exercice :
Envisager tous les cas possibles pour le choix de a, b et c :
l’écriture d’un programme numériquement robuste pour le calcul
des racines d’un trinôme du second degré est loin d’être simple.



Quelques propriétés des nombres à virgule flottante

L’annulation catastrophique. (Catastrophic
cancellation)

C’est le diable !..

Perte de précision qui résulte de la soustraction de deux nombres
voisins. démo

Êtes vous sûrs de savoir calculer les racines d’un trinôme du second
degré ? démo

Exercice :
Envisager tous les cas possibles pour le choix de a, b et c :
l’écriture d’un programme numériquement robuste pour le calcul
des racines d’un trinôme du second degré est loin d’être simple.



Quelques propriétés des nombres à virgule flottante

L’annulation catastrophique. (Catastrophic
cancellation)

C’est le diable !..

Perte de précision qui résulte de la soustraction de deux nombres
voisins. démo

Êtes vous sûrs de savoir calculer les racines d’un trinôme du second
degré ? démo

Exercice :
Envisager tous les cas possibles pour le choix de a, b et c :
l’écriture d’un programme numériquement robuste pour le calcul
des racines d’un trinôme du second degré est loin d’être simple.



Quelques propriétés des nombres à virgule flottante

Les ensembles de nombres flottants ne sont pas des
groupes pour l’addition.

Groupe additif :

1. élément neutre : a+ 0 = a

2. élément symétrique : pour tout a il existe −a tel que
a+ (−a) = 0.

3. Associativité : a+ (b + c) = (a+ b) + c .

Dans les ensembles de nombres flottants, l’addition
n’est pas associative !
demo

Conséquence : le même programme, compilé par deux
compilateurs (optimiseurs) différents ne donne pas toujours
exactement le même résultat.



Quelques propriétés des nombres à virgule flottante

Les ensembles de nombres flottants ne sont pas des
groupes pour l’addition.

Groupe additif :

1. élément neutre : a+ 0 = a

2. élément symétrique : pour tout a il existe −a tel que
a+ (−a) = 0.

3. Associativité : a+ (b + c) = (a+ b) + c .

Dans les ensembles de nombres flottants, l’addition
n’est pas associative !
demo

Conséquence : le même programme, compilé par deux
compilateurs (optimiseurs) différents ne donne pas toujours
exactement le même résultat.



Quelques propriétés des nombres à virgule flottante

Les ensembles de nombres flottants ne sont pas des
groupes pour l’addition.

Groupe additif :

1. élément neutre : a+ 0 = a

2. élément symétrique : pour tout a il existe −a tel que
a+ (−a) = 0.

3. Associativité : a+ (b + c) = (a+ b) + c .

Dans les ensembles de nombres flottants, l’addition
n’est pas associative !
demo

Conséquence : le même programme, compilé par deux
compilateurs (optimiseurs) différents ne donne pas toujours
exactement le même résultat.



Quelques propriétés des nombres à virgule flottante

Calcul de récurrences.

un+1 = 4un − 1

avec u0 = 1/3.
demo

Réaction du calculateur malin : comportement normal : puisqu’on
ne calcule pas exactement les ui , les erreurs sont multipliées par 4 à
chaque itération.

On recommence avec :

un+1 = 3un − 1

avec u0 = 1/2. demo



Quelques propriétés des nombres à virgule flottante

Calcul de récurrences.

un+1 = 4un − 1

avec u0 = 1/3.
demo

Réaction du calculateur malin : comportement normal : puisqu’on
ne calcule pas exactement les ui , les erreurs sont multipliées par 4 à
chaque itération.

On recommence avec :

un+1 = 3un − 1

avec u0 = 1/2. demo



Quelques propriétés des nombres à virgule flottante

Calcul de récurrences.

un+1 = 4un − 1

avec u0 = 1/3.
demo

Réaction du calculateur malin : comportement normal : puisqu’on
ne calcule pas exactement les ui , les erreurs sont multipliées par 4 à
chaque itération.

On recommence avec :

un+1 = 3un − 1

avec u0 = 1/2. demo



Quelques propriétés des nombres à virgule flottante

Mais qu’est ce que cette histoire ? ? ?

Explication :

1. un+1 = 4un − 1 avec u0 = 1/3 :

1
3
=

1
4

∞∑
i=0

1
4i

=
1
4

∞∑
i=0

1
22i ,

et donc u0 = 1/3 ne peut pas être représenté exactement en
flottant. L’erreur initiale est amplifiée...

2. un+1 = 3un − 1 avec u0 = 1/2.
En base 2 :

I 1/2 s’écrit 0.1,
I 3/2 s’écrit 1.1

donc le calcul est exact .



Quelques propriétés des nombres à virgule flottante

Mais qu’est ce que cette histoire ? ? ?

Explication :

1. un+1 = 4un − 1 avec u0 = 1/3 :

1
3
=

1
4

∞∑
i=0

1
4i

=
1
4

∞∑
i=0

1
22i ,

et donc u0 = 1/3 ne peut pas être représenté exactement en
flottant. L’erreur initiale est amplifiée...

2. un+1 = 3un − 1 avec u0 = 1/2.
En base 2 :

I 1/2 s’écrit 0.1,
I 3/2 s’écrit 1.1

donc le calcul est exact .



Quelques propriétés des nombres à virgule flottante

Mais qu’est ce que cette histoire ? ? ?

Explication :

1. un+1 = 4un − 1 avec u0 = 1/3 :

1
3
=

1
4

∞∑
i=0

1
4i

=
1
4

∞∑
i=0

1
22i ,

et donc u0 = 1/3 ne peut pas être représenté exactement en
flottant. L’erreur initiale est amplifiée...

2. un+1 = 3un − 1 avec u0 = 1/2.

En base 2 :
I 1/2 s’écrit 0.1,
I 3/2 s’écrit 1.1

donc le calcul est exact .



Quelques propriétés des nombres à virgule flottante

Mais qu’est ce que cette histoire ? ? ?

Explication :

1. un+1 = 4un − 1 avec u0 = 1/3 :

1
3
=

1
4

∞∑
i=0

1
4i

=
1
4

∞∑
i=0

1
22i ,

et donc u0 = 1/3 ne peut pas être représenté exactement en
flottant. L’erreur initiale est amplifiée...

2. un+1 = 3un − 1 avec u0 = 1/2.
En base 2 :

I 1/2 s’écrit 0.1,
I 3/2 s’écrit 1.1

donc le calcul est exact .



Finalement, que peut-on calculer avec les nombres à virgule
flottante ?

On ne peut effectuer que des calculs pour lesquels la solution
dépend gentiment des données (problèmes bien posés).

I Les nombres à virgule flottante doivent être regardés avec
méfiance, mais ils n’ont pas empêché le développement du
calcul et de ses applications : ce ne sont pas les erreurs
d’arrondi qui limitent la validité de la prévision météorologique,
pour ne citer que cet exemple.

I La stabilité des algorithmes vis-à-vis des petites perturbations
doit être étudiée.



Finalement, que peut-on calculer avec les nombres à virgule
flottante ?

On ne peut effectuer que des calculs pour lesquels la solution
dépend gentiment des données (problèmes bien posés).

I Les nombres à virgule flottante doivent être regardés avec
méfiance, mais ils n’ont pas empêché le développement du
calcul et de ses applications : ce ne sont pas les erreurs
d’arrondi qui limitent la validité de la prévision météorologique,
pour ne citer que cet exemple.

I La stabilité des algorithmes vis-à-vis des petites perturbations
doit être étudiée.



Nombres à virgule flottante : un exemple de problème mal
conditionné

Résoudre de système linéaire Ax = B en prenant pour A une
matrice de taille n, avec Ai ,j = 1/(i + j).

I La solution est dans Q : calcul exact si on a les moyens de
calculer dans Q (Exemple : bibliothèque Linbox)

I On peut alors comparer la solution dans Q à la solution
« flottante ».

démo.



Nombres à virgule flottante : retour sur la norme

32 bits

64 bits

Les valeurs nombres ayant tous les bits de leur exposant à 1 sont
réservés pour des valeurs exceptionnelles :

I NaN mantisse différente de 0. Pour indiquer des résultats
comme 0/0.

I Infty mantisse égale à 0 (le signe compte (±∞).

I 0 est codé en mettant 0 dans la mantisse et l’exposant. Le
signe compte (+0 et −0).

I les nombres dénormalisés : l’exposant est mis à 0. Permettent
de coder des valeurs en dehors de l’intervalle « normalisé ».



Nombres à virgule flottante : retour sur la norme

32 bits

64 bits

Les valeurs nombres ayant tous les bits de leur exposant à 1 sont
réservés pour des valeurs exceptionnelles :

I NaN mantisse différente de 0. Pour indiquer des résultats
comme 0/0.

I Infty mantisse égale à 0 (le signe compte (±∞).

I 0 est codé en mettant 0 dans la mantisse et l’exposant. Le
signe compte (+0 et −0).

I les nombres dénormalisés : l’exposant est mis à 0. Permettent
de coder des valeurs en dehors de l’intervalle « normalisé ».



Nombres à virgule flottante : retour sur la norme

32 bits

64 bits

Les valeurs nombres ayant tous les bits de leur exposant à 1 sont
réservés pour des valeurs exceptionnelles :

I NaN mantisse différente de 0. Pour indiquer des résultats
comme 0/0.

I Infty mantisse égale à 0 (le signe compte (±∞).

I 0 est codé en mettant 0 dans la mantisse et l’exposant. Le
signe compte (+0 et −0).

I les nombres dénormalisés : l’exposant est mis à 0. Permettent
de coder des valeurs en dehors de l’intervalle « normalisé ».



Nombres à virgule flottante : références bibliographiques

I What every scientist should know about floating-point
arithmetic. David Goldberg.
Texte disponible à de nombreux endroits, entre autres à :
http://perso.ens-lyon.fr/jean-michel.muller/
goldberg.pdf.

I Handbook of Floating-Point Arithmetic, Muller et
collaborateurs (ENS Lyon).

I Calcul mathématique avec Sage. Casamayou, Alexandre et
Connan, Guillaume et Dumont, Thierry et Fousse, Laurent et
Maltey, François et Meulien, Matthias et Mezzarobba, Marc et
Pernet, Clément et Thiéry, Nicolas et Zimmermann, Paul.

http://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
http://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf

