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Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Le parallélisme en mémoire partagée expliqué en 2

minutes.

Machines actuelles :

@ 1,2,4... processeurs,

@ chaque processeur a nceeurs, avec n=2 4,8, .....
Bientdt : une centaine de coeurs par machine.
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Le parallélisme en mémoire partagée expliqué en 2

minutes.

Machines actuelles :

@ 1,2,4... processeurs,

@ chaque processeur a nceeurs, avec n=2 4,8, .....
Bientdt : une centaine de coeurs par machine.

Parallélisme obligatoire!

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Le parallélisme en mémoire partagée expliqué en 2

minutes.

Processus légers (threads) :

—_—
—_—
—_— —_—
_—
—_—

Seq Par. Seq

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z
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Le parallélisme en mémoire partagée expliqué en 2

minutes.

Partage de la mémoire (sans sécurité).

ultanement

meme @, simt
NON!

Standard : Open MP, mais aussi TBB (C++).

RAM RAM RAM RAM @ differentes
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Le parallélisme en mémoire partagée expliqué en 2

minutes.

Exemple : le produit matrice x vecteur.
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Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !
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machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
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Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).
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On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2x8
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On compte les flops : x,+—.
Attention aux divisions (plus lentes) !
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Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2x8x2610%x 8
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Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2 x 8 x 2.6 10° x 8 = 332 Gflops/seconde.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Essai : produit matrice x vecteur

Blas Intel, paralléle.
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Compte d’opérations :
@ produit scalaire de 2 vecteurs de taille n: 2n flops.

@ produit matrice(n x n) x vecteur n : n produits scalaires
=> 27° flops.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Bande passante

Un calcul ne peut étre effectué que si:
@ les opérandes sont disponibles,
@ on peut écrire le résultat.
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Intensité arithmétique
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Bande passante

Un calcul ne peut étre effectué que si:
@ les opérandes sont disponibles,
@ on peut écrire le résultat.

=> la bande passante entre (processeur / cache) et la
mémoire limite les performances.

Intensité arithmétique
I, = nombre d’ operations / quantité de mémoire échangée.

GFlops/sec atteignables =
min( Performance « peak », Bande passante x I3).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Le « Roofline Model »
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Le « Roofline Model »
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Williams S. et al: Roofline : An Insightful Visual Performance Model for
Multicore Architectures — Commun. ACM, 1999.

Thierry i i est ce que code ne va pas si vite



Intensité arithmétique et Roofline Model : quelques
exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
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Intensité arithmétique et Roofline Model : quelques
exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
@ Appliquer le stencil du Laplacien a 7 en dimension 3 :
I =8/8 =1.
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Intensité arithmétique et Roofline Model : quelques
exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
@ Appliquer le stencil du Laplacien a 7 en dimension 3 :

l,=8/8 =1.
© Produit Matrice x Matrix C=A.B: [,=2n/4n? =
O(n).
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Intensité arithmétique et Roofline Model : quelques

exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
@ Appliquer le stencil du Laplacien a 7 en dimension 3 :

I,=8/8=1.
© Produit Matrice x Matrix C=A.B: [,=2n/4n? =
O(n).
0.4-1.0 ﬂnﬁs per byte Typically < zzups per byte 0(10) ﬂnpf per byte
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Intensité arithmétique : experiences

Matrix x Matrix product (DGEMM, Intel mkl parallel version) :
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Intensité arithmétique : experiences

Produit Matrice x Vecteur (DGEMYV, Intel mkl parallel version) :
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Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en
matrice CSR :
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Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en
matrice CSR :

0o 1 2 3 a 0 1 2 3 4 5

ofzo) asl 167} wfo [3]s[7]u]ie] [ [ |

1 82 92 0 1 2 3 4 5 6 7 8 9 1011
o[ uam] [ amfo s[4 [s [1 [2[o]2 [s]a]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘
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Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en

matrice CSR :
o 1 2 3 4 0o 1 2 3 4 5
ofasTasT Tor] amo s[5 > | T |
1 82 92 0 1 2 3 4 5 6 7 8 9 1011
'L m [ e fo e [+Ta[a [ [o[ols [+]1]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).

@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
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Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en

matrice CSR :
o 1 2 3 4 0o 1 2 3 4 5
ofes]_TosTTer) wafo [ 3 +[oa[ | |
1 82 92 0 1 2 3 4 5 6 7 8 9 1011
'L m [ e fo e [+Ta[a [ [o[ols [+]1]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).
@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
@ Machine Bdwth : 8.73 Giga doubles/s
=> Attainable = 0.7 x 8.73 = 6.11 Gflops.
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Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en

matrice CSR :
o 1 2 3 4 0o 1 2 3 4 5
ofes]_TosTTer) wafo [ 3 +[oa[ | |
1 82 92 0 1 2 3 4 5 6 7 8 9 1011
'L m [ e fo e [+Ta[a [ [o[ols [+]1]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).
@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
@ Machine Bdwth : 8.73 Giga doubles/s
=> Attainable = 0.7 x 8.73 = 6.11 Gflops.

Measured : 6.42 Gflops.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en
matrice CSR :
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On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).
@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
@ Machine Bdwth : 8.73 Giga doubles/s
=> Attainable = 0.7 x 8.73 = 6.11 Gflops.

Measured : 6.42 Gflops.

Note : bounded to 1.15 x 8.73 ~ 10 Gflops/s whatever the data
structure.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Comment mesurer la bande passante d’'une machine ?

Divers programmes, dont st ream
https://www.cs.virginia.edu/stream/

Programme en C.

NB : augmenter le plus possible la taille des tableaux!

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z


https://www.cs.virginia.edu/stream/

Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées
dans le cache L1.
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On peut (il faut!) favoriser la réutilisation des données stockées
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Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées
dans le cache L1.

Uj = 0.25 (Ujt1,j + Ui—1j — 4Uji + Ujj11 + Ujj—1).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



k
Y = Stencil;(U) + Z o;V;.

i=0
k | Max.l, | Gflops/s
0 4.0 34.8
1 3.3 29.0
2 3.0 26.1
3 2.8 24.4
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k
Y = Stencil;(U) + Z o;V;.

i=0
k | Max.l, | Gflops/s
0 4.0 34.8
1 3.3 29.0
2 3.0 26.1
3 2.8 24.4

Program the loops so as to maximize data re-use.

—

Cut the domain in French Fries.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Avoid :
@ dot products,
@ sparse matrices (incomplete LU preconditioning),
@ linear combination of large vectors.
@ methods with a limited parallelism.
@ ... low intensity methods.
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Avoid :
@ dot products,
@ sparse matrices (incomplete LU preconditioning),
@ linear combination of large vectors.
@ methods with a limited parallelism.
@ ... low intensity methods.
Prefer :
@ ... high intensity methods,
@ embarrassingly parallel methods.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



Non Uniform Memory Access (NUMA)

Operating System

2925 s 025 sors.

Les acces « remote »sont trés lents!
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Non Uniform Memory Access (NUMA)

jrusteemydecs

Operating System

2925 s 025 sors.

Les acces « remote »sont trés lents!

Remeédes :
@ fixer les threads sur les cceurs.
@ «touch »des données.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z



