Mais pourquoi donc est ce que mon code ne
va pas si vite que ¢ca?

Intensité arithmétique, Roofline model, Numa
etc...

Thierry Dumont
Institut Camille Jordan

Février 2017

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Machines actuelles :

@ 1,2,4... processeurs,

@ chaque processeur a nceeurs, avec n=2 4,8,
Bientdt : une centaine de coeurs par machine.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Machines actuelles :

@ 1,2,4... processeurs,

@ chaque processeur a nceeurs, avec n=2 4,8,
Bientdt : une centaine de coeurs par machine.

Parallélisme obligatoire!

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Processus légers (threads) :

—_—
—_—
—_— —_—
_—
—_—

Seq Par. Seq

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Partage de la mémoire (sans sécurité).

@ meme @

RAM RAM RAM RAM @ differentes

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Partage de la mémoire (sans sécurité).

RAM RAM RAM RAM @ differentes

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Partage de la mémoire (sans sécurité).

ultanement

meme @, simt
NON!

Standard : Open MP, mais aussi TBB (C++).

RAM RAM RAM RAM @ differentes

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Exemple : le produit matrice x vecteur.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Exemple : le produit matrice x vecteur.

1 1|2

2 2 1

3 20 14

4 2 1
5 2 11| 2
6 2|1

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le parallélisme en mémoire partagée expliqué en 2

minutes.

Exemple : le produit matrice x vecteur.

1 1|2

2 2 1

3 20 14

4 2 1
5 2 11| 2
6 2|1

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :
machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2x8

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2x8x2610°

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2x8x2610%x 8

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Performances d’'une machine : réves et réalité

On compte les flops : x,+—.
Attention aux divisions (plus lentes) !

Exemple :

machine Intel « Sandy bridge » 2 processeurs, avec chacun 8
ceeurs, tournant & 2.6 Ghz (2.6 10° cycles/second).

Aspect SIMD :

In one clock cycle, do :
yi= axi + b;, i=1,4(8flops).

La performance peak est donc de :
2 x 8 x 2.6 10° x 8 = 332 Gflops/seconde.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Essai : produit matrice x vecteur

Blas Intel, paralléle.

45

40 oo 1
35 —
30 ° q
@
e o5l J
i .
S 20 . J
15 1 ° 1
.
0r o o 1
. K
Loe ° eeeo, |
°
0 . . .
10 100 1000 10000 10000¢

n

Compte d’opérations :
@ produit scalaire de 2 vecteurs de taille n: 2n flops.

@ produit matrice(n x n) x vecteur n : n produits scalaires
=> 27° flops.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Bande passante

Un calcul ne peut étre effectué que si:
@ les opérandes sont disponibles,
@ on peut écrire le résultat.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Bande passante

Un calcul ne peut étre effectué que si:
@ les opérandes sont disponibles,
@ on peut écrire le résultat.

=> la bande passante entre (processeur / cache) et la
mémoire limite les performances.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Bande passante

Un calcul ne peut étre effectué que si:
@ les opérandes sont disponibles,
@ on peut écrire le résultat.

=> la bande passante entre (processeur / cache) et la
mémoire limite les performances.

Intensité arithmétique

I, = nombre d’ operations / quantité de mémoire échangée.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Bande passante

Un calcul ne peut étre effectué que si:
@ les opérandes sont disponibles,
@ on peut écrire le résultat.

=> la bande passante entre (processeur / cache) et la
mémoire limite les performances.

Intensité arithmétique
I, = nombre d’ operations / quantité de mémoire échangée.

GFlops/sec atteignables =
min(Performance « peak », Bande passante x I3).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Le « Roofline Model »

1000

332 Gflops/s

Gflops/s

1 1 1
1 10 100 1000 10000
Arithmetic Intensity

Memory bounded CPU bounded

Le « Roofline Model »

1000

332 Gflops/s

41.5 Gflops/s o AVX; o vectorisation. ~ -

Gflops/s

1 1 1
1 10 100 1000 10000
Arithmetic Intensity

Memory bounded CPU bounded

est ce que code ne va pas si vite q

Le « Roofline Model »

1000

332 Gflops/s

100 £

41.5 Gflops/s T T TR AVX, o vectorisation, T T T T T T T

Gflops/s

1 1 1
1 10 100 1000 10000
Arithmetic Intensity

Memory bounded CPU bounded

Williams S. et al: Roofline : An Insightful Visual Performance Model for
Multicore Architectures — Commun. ACM, 1999.

Thierry i i est ce que code ne va pas si vite

Intensité arithmétique et Roofline Model : quelques
exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique et Roofline Model : quelques
exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
@ Appliquer le stencil du Laplacien a 7 en dimension 3 :
I =8/8 =1.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique et Roofline Model : quelques
exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
@ Appliquer le stencil du Laplacien a 7 en dimension 3 :

l,=8/8 =1.
© Produit Matrice x Matrix C=A.B: [,=2n/4n? =
O(n).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique et Roofline Model : quelques

exemples

Unitée utilisée : double.

@ Produit scalaire s= Y"1 x.yi 1 la=1.
@ Appliquer le stencil du Laplacien a 7 en dimension 3 :

I,=8/8=1.
© Produit Matrice x Matrix C=A.B: [,=2n/4n? =
O(n).
0.4-1.0 ﬂnﬁs per byte Typically < zzups per byte 0(10) ﬂnpf per byte

N N\

c Inten?lty

Particle
Stencils (PDEs) Methods

FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
Methods (BLAS3)
Y Y Y
o(1) O(leg(N)) O(N)

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Matrix x Matrix product (DGEMM, Intel mkl parallel version) :

350

300

250

200

Gflops/s

150

1 10 100 1000 10000 100000

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Produit Matrice x Vecteur (DGEMYV, Intel mkl parallel version) :

45

40 |-)

35+

30 °
@
z BT °
2 °
S 201

15 - o

°
0r e o
° °
s ° ° eee00g00
°
o . . .
10 100 1000 10000 10000¢

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en
matrice CSR :

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en
matrice CSR :

0o 1 2 3 a 0 1 2 3 4 5

ofzo) asl 167} wfo [3]s[7]u]ie] [[|

1 82 92 0 1 2 3 4 5 6 7 8 9 1011
o[uam] [amfo s[4 [s [1 [2[o]2 [s]a]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en

matrice CSR :
o 1 2 3 4 0o 1 2 3 4 5
ofasTasT Tor] amo s[5 > | T |
1 82 92 0 1 2 3 4 5 6 7 8 9 1011
'L m [e fo e [+Ta[a [[o[ols [+]1]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).

@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en

matrice CSR :
o 1 2 3 4 0o 1 2 3 4 5
ofes]_TosTTer) wafo [3 +[oa[| |
1 82 92 0 1 2 3 4 5 6 7 8 9 1011
'L m [e fo e [+Ta[a [[o[ols [+]1]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).
@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
@ Machine Bdwth : 8.73 Giga doubles/s
=> Attainable = 0.7 x 8.73 = 6.11 Gflops.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en

matrice CSR :
o 1 2 3 4 0o 1 2 3 4 5
ofes]_TosTTer) wafo [3 +[oa[| |
1 82 92 0 1 2 3 4 5 6 7 8 9 1011
'L m [e fo e [+Ta[a [[o[ols [+]1]]
3130 15]45 0 1 2 3 4 5 6 7 8 9 10 11
4 25 89 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).
@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
@ Machine Bdwth : 8.73 Giga doubles/s
=> Attainable = 0.7 x 8.73 = 6.11 Gflops.

Measured : 6.42 Gflops.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Intensité arithmétique : experiences

Appiquer le stencil du laplacien en 3-d (7 points), stocké en
matrice CSR :

0O 1 2 3 a4 0 1 2 3 4 5

7| o [3[s[7]w[n] |] |
8.2 9.2 0 1 2 3 4 5 6 7 8 9 10 11
BEEEEnannananannn

3.0 1545

N
o
w
N

2w ow o~ o

0 1 2 3 4 5 6 7 8 9 1011
2.5 8.9 values ‘2,0‘3,5‘6,7‘&2‘92‘11‘28‘30‘15‘45‘15‘8,9‘

On fait I'hypothése (raisonable) que :
sizeof (double) = 2 sizeof (int).
@ Algorithm Bdwth : 37/2 double ; Flops : 13 => [, ~ 0.7.
@ Machine Bdwth : 8.73 Giga doubles/s
=> Attainable = 0.7 x 8.73 = 6.11 Gflops.

Measured : 6.42 Gflops.

Note : bounded to 1.15 x 8.73 ~ 10 Gflops/s whatever the data
structure.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Comment mesurer la bande passante d’'une machine ?

Divers programmes, dont st ream
https://www.cs.virginia.edu/stream/

Programme en C.

NB : augmenter le plus possible la taille des tableaux!

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

https://www.cs.virginia.edu/stream/

Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées
dans le cache L1.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢a

Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées
dans le cache L1.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢a

Est-ce sans espoir ?

On peut (il faut!) favoriser la réutilisation des données stockées
dans le cache L1.

Uj = 0.25 (Ujt1,j + Ui—1j — 4Uji + Ujj11 + Ujj—1).

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

k
Y = Stencil;(U) + Z o;V;.

i=0
k | Max.l, | Gflops/s
0 4.0 34.8
1 3.3 29.0
2 3.0 26.1
3 2.8 24.4

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

k
Y = Stencil;(U) + Z o;V;.

i=0
k | Max.l, | Gflops/s
0 4.0 34.8
1 3.3 29.0
2 3.0 26.1
3 2.8 24.4

Program the loops so as to maximize data re-use.

—

Cut the domain in French Fries.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Avoid :
@ dot products,
@ sparse matrices (incomplete LU preconditioning),
@ linear combination of large vectors.
@ methods with a limited parallelism.
@ ... low intensity methods.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Avoid :
@ dot products,
@ sparse matrices (incomplete LU preconditioning),
@ linear combination of large vectors.
@ methods with a limited parallelism.
@ ... low intensity methods.
Prefer :
@ ... high intensity methods,
@ embarrassingly parallel methods.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Non Uniform Memory Access (NUMA)

Operating System

2925 s 025 sors.

Les acces « remote »sont trés lents!

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

Non Uniform Memory Access (NUMA)

jrusteemydecs

Operating System

2925 s 025 sors.

Les acces « remote »sont trés lents!

Remeédes :
@ fixer les threads sur les cceurs.
@ «touch »des données.

Thierry Dumont Mais pourquoi donc est ce que mon code ne va pas si vite que ¢z

