
Bibliothèques

Thierry Dumont
–Institut Camille Jordan–

16 février 2017

Typologie

Méthodes numériques
Algèbre linéaire, typologie.

BLAS
Matrices pleines : Lapack
Matrices creuses

Transformée de Fourier Rapide
Systèmes d’équations différentielles

Bibliothèques d’objets et méthodes associées

Parallélisme

Graphique

Et d’autres besoins ?

Communications entres langages

C(++) -> Fortran
Python -> C(++), Python -> Fortran

A l’aide !

Différentes types de bibliothèques : point de vue fonctionnel.

I algorithmes, méthodes.
I calculs
I parallélisme, communications,
I graphiques.

I objets et méthodes associées.

Généricité.

Différentes types de bibliothèques : point de vue fonctionnel.

I algorithmes, méthodes.
I calculs
I parallélisme, communications,
I graphiques.

I objets et méthodes associées.

Généricité.

Différentes types de bibliothèques : langages

1. classiques : C, Fortran,
2. à objets : C++, Python.

En pratique :
1. bibliothèque binaire (archive .a ou dynamique .o)+ include

files (C),
2. include file.

Différentes types de bibliothèques : langages

1. classiques : C, Fortran,
2. à objets : C++, Python.

En pratique :
1. bibliothèque binaire (archive .a ou dynamique .o)

+ include
files (C),

2. include file.

Différentes types de bibliothèques : langages

1. classiques : C, Fortran,
2. à objets : C++, Python.

En pratique :
1. bibliothèque binaire (archive .a ou dynamique .o)+ include

files (C),
2. include file.

Différentes types de bibliothèques : interface

Contrat entre l’utilisateur et la bibliothèque : si un objet correct
est fournit, on aura un résultat : calcul effectué ou signal d’erreur.

1. compilation complètement séparée (vieux fortran 77). Pas de
contrôle.

2. C : include file : décrit l’interface du module. Contrôle du
compilateur.

3. C++ et langages à objet. Plus rigoureux.

Différentes types de bibliothèques : interface

Contrat entre l’utilisateur et la bibliothèque : si un objet correct
est fournit, on aura un résultat : calcul effectué ou signal d’erreur.

1. compilation complètement séparée (vieux fortran 77). Pas de
contrôle.

2. C : include file : décrit l’interface du module. Contrôle du
compilateur.

3. C++ et langages à objet. Plus rigoureux.

Différentes types de bibliothèques : interface

Contrat entre l’utilisateur et la bibliothèque : si un objet correct
est fournit, on aura un résultat : calcul effectué ou signal d’erreur.

1. compilation complètement séparée (vieux fortran 77). Pas de
contrôle.

2. C : include file : décrit l’interface du module. Contrôle du
compilateur.

3. C++ et langages à objet. Plus rigoureux.

Différentes types de bibliothèques : interface

Contrat entre l’utilisateur et la bibliothèque : si un objet correct
est fournit, on aura un résultat : calcul effectué ou signal d’erreur.

1. compilation complètement séparée (vieux fortran 77). Pas de
contrôle.

2. C : include file : décrit l’interface du module. Contrôle du
compilateur.

3. C++ et langages à objet. Plus rigoureux.

En pratique : Linux (Ubuntu, Debian)

Packages .deb :
libsuperlu3 et libsuperlu3-dev

Installent :
1-

/usr/lib/libsuperlu.a
/usr/lib/libsuperlu.so
/usr/lib/libsuperlu.so.3
/usr/lib/libsuperlu.so.3.0.0

2-
/usr/include/superlu/... et

/usr/share/doc/libsuperlu-dev/.

En pratique : Linux (Ubuntu, Debian)

Packages .deb :
libsuperlu3 et libsuperlu3-dev
Installent :
1-

/usr/lib/libsuperlu.a
/usr/lib/libsuperlu.so
/usr/lib/libsuperlu.so.3
/usr/lib/libsuperlu.so.3.0.0

2-
/usr/include/superlu/... et

/usr/share/doc/libsuperlu-dev/.

Licences

Logiciels libres (GPL, Cecill....)

Attention à quelques vieilles bibliothèques (exemple : Fishpack).

Licences

Logiciels libres (GPL, Cecill....)
Attention à quelques vieilles bibliothèques (exemple : Fishpack).

Algèbre linéaire : typologie

1. matrices pleines,
2. matrices creuses.

1. systèmes linéaires, moindres carrés etc...
2. valeurs et vecteurs propres.

Coefficients : flottants simples ou doubles, complexes, rationnels.

Algèbre linéaire : typologie

1. matrices pleines,
2. matrices creuses.

1. systèmes linéaires, moindres carrés etc...
2. valeurs et vecteurs propres.

Coefficients : flottants simples ou doubles, complexes, rationnels.

Algèbre linéaire : typologie

1. matrices pleines,
2. matrices creuses.

1. systèmes linéaires, moindres carrés etc...
2. valeurs et vecteurs propres.

Coefficients : flottants simples ou doubles, complexes, rationnels.

BLAS

Basic Linear Algebra Subroutine.
Années 80 : Linpack. Subroutines Fortran reposent sur les BLAS.
Repris par Lapack puis par de nombreuses autres bibliothèques.

1. BLAS 1 : opérations sur les vecteurs,
2. BLAS 2 : opérations (matrices, vecteurs),
3. BLAS 3 : opérations matrices x vecteurs.

BLAS

Atlas :
Calculs par blocs pour optimiser les défauts de cache. S’optimisent
à l’installation .

OpenBLAS : Contient des noyaux pré-optimisés pour différentes
architectures.
Autres BLAS : Intel MKL.
OpenBLAS et MKL : versions séquentielles et parallèles.
Exemple : 3Ghz, Intel I7, 16 cœurs. Produit de 2 matrices
1000x1000 : 300 Gigaflops .
Il faut utiliser des BLAS optimisés ! .

BLAS

Atlas :
Calculs par blocs pour optimiser les défauts de cache. S’optimisent
à l’installation .

OpenBLAS : Contient des noyaux pré-optimisés pour différentes
architectures.
Autres BLAS : Intel MKL.

OpenBLAS et MKL : versions séquentielles et parallèles.
Exemple : 3Ghz, Intel I7, 16 cœurs. Produit de 2 matrices
1000x1000 : 300 Gigaflops .
Il faut utiliser des BLAS optimisés ! .

BLAS

Atlas :
Calculs par blocs pour optimiser les défauts de cache. S’optimisent
à l’installation .

OpenBLAS : Contient des noyaux pré-optimisés pour différentes
architectures.
Autres BLAS : Intel MKL.
OpenBLAS et MKL : versions séquentielles et parallèles.

Exemple : 3Ghz, Intel I7, 16 cœurs. Produit de 2 matrices
1000x1000 : 300 Gigaflops .
Il faut utiliser des BLAS optimisés ! .

BLAS

Atlas :
Calculs par blocs pour optimiser les défauts de cache. S’optimisent
à l’installation .

OpenBLAS : Contient des noyaux pré-optimisés pour différentes
architectures.
Autres BLAS : Intel MKL.
OpenBLAS et MKL : versions séquentielles et parallèles.
Exemple : 3Ghz, Intel I7, 16 cœurs. Produit de 2 matrices
1000x1000 : 300 Gigaflops .
Il faut utiliser des BLAS optimisés ! .

Lapack

I reposent sur les blas.
I fortran 77.
I (S) simple, (D) double, (C) complexe, (Z) complexe double.
I man pages.

I factorisations, systèmes linéaires, valeurs et vecteurs propres.
I matrices pleines, bandes, symétriques, symétriques bande.
I Toujours en développement.

Édition des liens : -llapack -latlas.

Lapack

I reposent sur les blas.
I fortran 77.
I (S) simple, (D) double, (C) complexe, (Z) complexe double.
I man pages.
I factorisations, systèmes linéaires, valeurs et vecteurs propres.
I matrices pleines, bandes, symétriques, symétriques bande.
I Toujours en développement.

Édition des liens : -llapack -latlas.

Exposé de Jack Dongarra, Lyon, 2016.

Exposé de Jack Dongarra, Lyon, 2016.

Matrices creuses : une structure de données “universelle”

1 2 0 0
0 3 9 0
0 1 4 0

Format CSL :

A = 1 2 3 9 1 4
JA = 0 1 1 2 1 2
IA = 0 2 4 6

Le format CSR s’obtient en classant les coefficients par colonnes.

Matrices creuses : une structure de données “universelle”

1 2 0 0
0 3 9 0
0 1 4 0

Format CSL :

A = 1 2 3 9 1 4
JA = 0 1 1 2 1 2
IA = 0 2 4 6

Le format CSR s’obtient en classant les coefficients par colonnes.

Matrices creuses : une structure de données “universelle”

1 2 0 0
0 3 9 0
0 1 4 0

Format CSL :

A = 1 2 3 9 1 4
JA = 0 1 1 2 1 2
IA = 0 2 4 6

Le format CSR s’obtient en classant les coefficients par colonnes.

Méthodes directes pour les systèmes linéaires

Ln−1 . . . L2L1A = U.

L = (Ln−1 . . . L2L1)
−1

A = LU

Années 70 80 : abandon au profit des méthodes itératives.

Méthodes directes pour les systèmes linéaires

Ln−1 . . . L2L1A = U.

L = (Ln−1 . . . L2L1)
−1

A = LU

Années 70 80 : abandon au profit des méthodes itératives.

Méthodes directes pour les systèmes linéaires

Ln−1 . . . L2L1A = U.

L = (Ln−1 . . . L2L1)
−1

A = LU

Années 70 80 : abandon au profit des méthodes itératives.

Décomposition LU : le retour !

Toute la difficulté est dans la factorisation !

1. algorithmes de renumérotation plus efficace (mais problème
np-complet),

2. fabrication de sous blocs pleins et appel des BLAS.
3. technique multifrontale.
4. etc.

Décomposition LU : le retour !

Toute la difficulté est dans la factorisation !

1. algorithmes de renumérotation plus efficace (mais problème
np-complet),

2. fabrication de sous blocs pleins et appel des BLAS.
3. technique multifrontale.
4. etc.

Décomposition LU : SuperLU, outil à tout faire.

Première implantation moderne, améliorée constamment.

+
I en C, interfaces Fortran.
I disponible dans les distributions Linux,
I utilisée par ne nombreux logiciels (Matlab, Scipy...)
I très fiable.
I mode “matrice symétrique”.

-
I interface désagréable (très “C”),
I variations de l’interface d’une version à l’autre, ainsi que des

“include files”.

Décomposition LU : SuperLU, outil à tout faire.

Première implantation moderne, améliorée constamment.

+
I en C, interfaces Fortran.

I disponible dans les distributions Linux,
I utilisée par ne nombreux logiciels (Matlab, Scipy...)
I très fiable.
I mode “matrice symétrique”.

-
I interface désagréable (très “C”),
I variations de l’interface d’une version à l’autre, ainsi que des

“include files”.

Décomposition LU : SuperLU, outil à tout faire.

Première implantation moderne, améliorée constamment.

+
I en C, interfaces Fortran.
I disponible dans les distributions Linux,
I utilisée par ne nombreux logiciels (Matlab, Scipy...)
I très fiable.
I mode “matrice symétrique”.

-
I interface désagréable (très “C”),
I variations de l’interface d’une version à l’autre, ainsi que des

“include files”.

Décomposition LU : SuperLU, outil à tout faire.

Première implantation moderne, améliorée constamment.

+
I en C, interfaces Fortran.
I disponible dans les distributions Linux,
I utilisée par ne nombreux logiciels (Matlab, Scipy...)
I très fiable.
I mode “matrice symétrique”.

-
I interface désagréable (très “C”),
I variations de l’interface d’une version à l’autre, ainsi que des

“include files”.

Décomposition LU : SuperLU, retour d’expérience

I performances remarquables, en tout cas en séquentiel.
I parfait pour résoudre une suite de systèmes identiques.
I Exemple de ∆U = F :

I 2d : ok jusqu’à 150 000 inconnues ou plus.
I 3d, ou 106 inconnues : trop lent, trop de mémoire.

I la dernière version calcule aussi des factorisations incomplètes.

Un outil de base presque parfait

A utiliser :
-en mode mise au point (plutôt que des méthodes itératives),
-pour des problèmes de taille raisonnable.

Décomposition LU : SuperLU, retour d’expérience

I performances remarquables, en tout cas en séquentiel.
I parfait pour résoudre une suite de systèmes identiques.
I Exemple de ∆U = F :

I 2d : ok jusqu’à 150 000 inconnues ou plus.
I 3d, ou 106 inconnues : trop lent, trop de mémoire.

I la dernière version calcule aussi des factorisations incomplètes.

Un outil de base presque parfait

A utiliser :
-en mode mise au point (plutôt que des méthodes itératives),
-pour des problèmes de taille raisonnable.

Décomposition LU : SuperLU, retour d’expérience

I performances remarquables, en tout cas en séquentiel.
I parfait pour résoudre une suite de systèmes identiques.
I Exemple de ∆U = F :

I 2d : ok jusqu’à 150 000 inconnues ou plus.
I 3d, ou 106 inconnues : trop lent, trop de mémoire.

I la dernière version calcule aussi des factorisations incomplètes.

Un outil de base presque parfait

A utiliser :
-en mode mise au point (plutôt que des méthodes itératives),
-pour des problèmes de taille raisonnable.

Décomposition LU : autres implantations

Solveurs parallèles :
-MUMPS : http://graal.ens-lyon.fr/MUMPS/
-PASTIX :
http://dept-info.labri.u-bordeaux.fr/~ramet/pastix/

http://graal.ens-lyon.fr/MUMPS/
http://dept-info.labri.u-bordeaux.fr/~ramet/pastix/

Méthodes itératives

I système symétrique : Gradient Conjugué.
I système non symétrique : GMRES et autres méthodes.

Préconditionnement : AX = B => KAX = KB.

Méthodes itératives

I système symétrique : Gradient Conjugué.
I système non symétrique : GMRES et autres méthodes.

Préconditionnement : AX = B => KAX = KB.

GC et GMRES

Propriété importante : les seules expressions ou A intervient sont
des produits matrices y = Ax.

Conséquences :
I Parallélisation MPI relativement facile,
I On n’a pas forcément besoin de connaître A, mais seulement

l’action de A sur un vecteur.
Différents préconditionneurs :

I factorisations incomplètes,
I solveurs approchés,
I préconditionnement ad’hoc.

(tous les codes sont libres (GPL, CCIL)).

I Codes de Y. Saad (Mr GMRES) :
http://www-users.cs.umn.edu/ : sparskit, parms , itsol.

I PETSC http://www.mcs.anl.gov/petsc/petsc-as/.
I HIPS http://hips.gforge.inria.fr/.
I HYPRE http://acts.nersc.gov/hypre/.

PETSC, HIPS, HYPRE : PETSC quasi standard.

En bleu les codes parallèles.

Valeurs et vecteurs propres : ARPACK.

http://www-users.cs.umn.edu/
http://www.mcs.anl.gov/petsc/petsc-as/
http://hips.gforge.inria.fr/
http://acts.nersc.gov/hypre/

(tous les codes sont libres (GPL, CCIL)).

I Codes de Y. Saad (Mr GMRES) :
http://www-users.cs.umn.edu/ : sparskit, parms , itsol.

I PETSC http://www.mcs.anl.gov/petsc/petsc-as/.
I HIPS http://hips.gforge.inria.fr/.
I HYPRE http://acts.nersc.gov/hypre/.

PETSC, HIPS, HYPRE : PETSC quasi standard.

En bleu les codes parallèles.

Valeurs et vecteurs propres : ARPACK.

http://www-users.cs.umn.edu/
http://www.mcs.anl.gov/petsc/petsc-as/
http://hips.gforge.inria.fr/
http://acts.nersc.gov/hypre/

FFT.

Une seule bibliothèque FFTW.
http://www.fftw.org/
Principe voisin de ATLAS.

http://www.fftw.org/

Systèmes d’équations différentielles, GSL

I lsode. Source seulement. Méthode Gear (première méthode
pour systèmes raides).

I routines fortran de H. Hairer et ses collègues (Univ. Genève)
http://www.unige.ch/~hairer/software.html.
Hautement recommandables !

GSL : (Gnu Scientific library). En C. Contient plein de bonnes
choses.

http://www.unige.ch/~hairer/software.html

Bibliothèques d’objets et méthodes associées

C++ : exemple (ancien) blitz++.

Bibliothèque de templates de tableaux.

Array<int,2> X(100,20)
Array<double,2> X(100,20)
Array<MaClasse,2> X(100,20)

Utilise les expression templates pour optimiser les expressions du
genre :
A= X+Y+Z; (entre tableaux).

Pas d’algèbre linéaire.

Bibliothèques d’objets et méthodes associées

C++ : exemple (ancien) blitz++.

Bibliothèque de templates de tableaux.

Array<int,2> X(100,20)
Array<double,2> X(100,20)
Array<MaClasse,2> X(100,20)

Utilise les expression templates pour optimiser les expressions du
genre :
A= X+Y+Z; (entre tableaux).

Pas d’algèbre linéaire.

Bibliothèques d’objets et méthodes associées

C++ : exemple (ancien) blitz++.

Bibliothèque de templates de tableaux.

Array<int,2> X(100,20)
Array<double,2> X(100,20)
Array<MaClasse,2> X(100,20)

Utilise les expression templates pour optimiser les expressions du
genre :
A= X+Y+Z; (entre tableaux).

Pas d’algèbre linéaire.

C++ STL

Standard Template Library.
Objets courants : Vector<int>, Set<MyClass>, et
iterateurs .

Set<int> S ;
S.insert(20) ;
....
int total=0 ;
for(set<int> : :iterator I=S.begin() ; I !=S.end() ;I++)
total+=*I ;

Conteneurs, Adaptateurs, Itérateurs, Algorithmes (Exemple : sort,
find...).

C++ STL

Standard Template Library.
Objets courants : Vector<int>, Set<MyClass>, et
iterateurs .

Set<int> S ;
S.insert(20) ;
....
int total=0 ;
for(set<int> : :iterator I=S.begin() ; I !=S.end() ;I++)
total+=*I ;

Conteneurs, Adaptateurs, Itérateurs, Algorithmes (Exemple : sort,
find...).

C++ STL

Standard Template Library.
Objets courants : Vector<int>, Set<MyClass>, et
iterateurs .

Set<int> S ;
S.insert(20) ;
....
int total=0 ;
for(set<int> : :iterator I=S.begin() ; I !=S.end() ;I++)
total+=*I ;

Conteneurs, Adaptateurs, Itérateurs, Algorithmes (Exemple : sort,
find...).

Construire une matrice CSL (CSR). Une astuce C++

Standard template library : map et pair.

I map : modélise une application d’un ensemble ordonné (E)
dans un ensemble (X),

I pair : les paires d’objets ordonnés sont munies de l’ordre
lexicographique.

map<pair<int,int>,double> M;
M[make_pair(i,j)]=1.0;

Ensuite, l’itérateur associé permet de parcourir la map M dans
l’ordre ad’hoc => construction facile de la matrice CSR (ou CSL).

Derrière : arbres B (B-trees, arbres équilibrés)=> performant.
Note : on peut changer l’ordre sur pair.

Construire une matrice CSL (CSR). Une astuce C++

Standard template library : map et pair.

I map : modélise une application d’un ensemble ordonné (E)
dans un ensemble (X),

I pair : les paires d’objets ordonnés sont munies de l’ordre
lexicographique.

map<pair<int,int>,double> M;
M[make_pair(i,j)]=1.0;

Ensuite, l’itérateur associé permet de parcourir la map M dans
l’ordre ad’hoc => construction facile de la matrice CSR (ou CSL).

Derrière : arbres B (B-trees, arbres équilibrés)=> performant.
Note : on peut changer l’ordre sur pair.

Construire une matrice CSL (CSR). Une astuce C++

Standard template library : map et pair.

I map : modélise une application d’un ensemble ordonné (E)
dans un ensemble (X),

I pair : les paires d’objets ordonnés sont munies de l’ordre
lexicographique.

map<pair<int,int>,double> M;
M[make_pair(i,j)]=1.0;

Ensuite, l’itérateur associé permet de parcourir la map M dans
l’ordre ad’hoc => construction facile de la matrice CSR (ou CSL).

Derrière : arbres B (B-trees, arbres équilibrés)=> performant.
Note : on peut changer l’ordre sur pair.

Construire une matrice CSL (CSR). Une astuce C++

Standard template library : map et pair.

I map : modélise une application d’un ensemble ordonné (E)
dans un ensemble (X),

I pair : les paires d’objets ordonnés sont munies de l’ordre
lexicographique.

map<pair<int,int>,double> M;
M[make_pair(i,j)]=1.0;

Ensuite, l’itérateur associé permet de parcourir la map M dans
l’ordre ad’hoc => construction facile de la matrice CSR (ou CSL).

Derrière : arbres B (B-trees, arbres équilibrés)=> performant.
Note : on peut changer l’ordre sur pair.

Construire une matrice CSL (CSR). Une astuce C++

Standard template library : map et pair.

I map : modélise une application d’un ensemble ordonné (E)
dans un ensemble (X),

I pair : les paires d’objets ordonnés sont munies de l’ordre
lexicographique.

map<pair<int,int>,double> M;
M[make_pair(i,j)]=1.0;

Ensuite, l’itérateur associé permet de parcourir la map M dans
l’ordre ad’hoc => construction facile de la matrice CSR (ou CSL).

Derrière : arbres B (B-trees, arbres équilibrés)=> performant.
Note : on peut changer l’ordre sur pair.

Construire une matrice CSL (CSR). Une astuce C++

Standard template library : map et pair.

I map : modélise une application d’un ensemble ordonné (E)
dans un ensemble (X),

I pair : les paires d’objets ordonnés sont munies de l’ordre
lexicographique.

map<pair<int,int>,double> M;
M[make_pair(i,j)]=1.0;

Ensuite, l’itérateur associé permet de parcourir la map M dans
l’ordre ad’hoc => construction facile de la matrice CSR (ou CSL).

Derrière : arbres B (B-trees, arbres équilibrés)=> performant.
Note : on peut changer l’ordre sur pair.

Au delà de la STL

I BOOST. www.boost.org (disponible dans les distributions
Linux),

I mouvement d’idées.

On vise la généricité .
Implantation : avant tout des include files.

www.boost.org

Au delà de la STL

I BOOST. www.boost.org (disponible dans les distributions
Linux),

I mouvement d’idées.

On vise la généricité .
Implantation : avant tout des include files.

www.boost.org

Calcul réparti : MPI

Standard de fait du calcul réparti.
Plusieurs implémentations (Mpich, Lam, OpenMpi).

Mémoire partagée

OpenMP n’est pas une bibliothèque !

Gestion de threads :

I gestion directe des threads posix.

I BoostThread (C++).
I TBB . Threads Building Blocks. C++.

Origine Intel, GPL.
Découpe en taches modélisées par des classes. On dispose
alors de classes comme “parallel-for”.
Simple à utiliser ! (et efficace).

Mémoire partagée

OpenMP n’est pas une bibliothèque !

Gestion de threads :

I gestion directe des threads posix.
I BoostThread (C++).

I TBB . Threads Building Blocks. C++.
Origine Intel, GPL.
Découpe en taches modélisées par des classes. On dispose
alors de classes comme “parallel-for”.
Simple à utiliser ! (et efficace).

Mémoire partagée

OpenMP n’est pas une bibliothèque !

Gestion de threads :

I gestion directe des threads posix.
I BoostThread (C++).
I TBB . Threads Building Blocks. C++.

Origine Intel, GPL.

Découpe en taches modélisées par des classes. On dispose
alors de classes comme “parallel-for”.
Simple à utiliser ! (et efficace).

Mémoire partagée

OpenMP n’est pas une bibliothèque !

Gestion de threads :

I gestion directe des threads posix.
I BoostThread (C++).
I TBB . Threads Building Blocks. C++.

Origine Intel, GPL.
Découpe en taches modélisées par des classes. On dispose
alors de classes comme “parallel-for”.
Simple à utiliser ! (et efficace).

Graphique

“Toolkit” VTK : http://www.vtk.org/
Surtout utilisé depuis Python.

http://www.vtk.org/

Autres besoins ?

Exemples :

1. mesure du temps
2. clickodromes : QT ?
3. xml : libxml2
4. etc...

C(++) -> Fortran

Deux choses à savoir :
1- En fortran : passage des paramètres par adresse
adresse= pointeurs C.

Exemple : man dgesv

NAME
DGESV - computes the solution to a real system of
linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER INFO, LDA, LDB, N, NRHS
INTEGER IPIV(*)
DOUBLE PRECISION A(LDA, *), B(LDB, *)

C(++) -> Fortran

Deux choses à savoir :
1- En fortran : passage des paramètres par adresse
adresse= pointeurs C.
Exemple : man dgesv

NAME
DGESV - computes the solution to a real system of
linear equations A * X = B,

SYNOPSIS
SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER INFO, LDA, LDB, N, NRHS
INTEGER IPIV(*)
DOUBLE PRECISION A(LDA, *), B(LDB, *)

il faut fabriquer un header dgesv.h

void dgesv_(int* n,int *nrhs, double* a, int* lda,
int* ipiv, double*b,int* ldb, int* info);

La routine C inclura ce fichier : #include “dgesv.h”.

int n=50,nrhs=1,lda=50;
double a[2500];
....
dgesv_(&n,&nrhs,a,&lda,.....);

il faut fabriquer un header dgesv.h

void dgesv_(int* n,int *nrhs, double* a, int* lda,
int* ipiv, double*b,int* ldb, int* info);

La routine C inclura ce fichier : #include “dgesv.h”.

int n=50,nrhs=1,lda=50;
double a[2500];
....
dgesv_(&n,&nrhs,a,&lda,.....);

2- Rangement des tableaux : Fortran parcourt les tableaux
colonnes après colonnes et les indices commencent à 1 !

Formule de passage :

double precision a(50,60)
a(12,22)=1.0

Où est a(12,22) ?

Vu du C : a : pointeur sur le début du tableau. Correspond à
a(1,1).
21 colonnes pleines avant a(12,22).
Donc, vu du C, a(12,22) est à l’adresse : a + 21*50+ 11.
Formule générale : a(i,j) − > a+ (j-1)*50+i-1.

2- Rangement des tableaux : Fortran parcourt les tableaux
colonnes après colonnes et les indices commencent à 1 !
Formule de passage :

double precision a(50,60)
a(12,22)=1.0

Où est a(12,22) ?

Vu du C : a : pointeur sur le début du tableau. Correspond à
a(1,1).
21 colonnes pleines avant a(12,22).
Donc, vu du C, a(12,22) est à l’adresse : a + 21*50+ 11.
Formule générale : a(i,j) − > a+ (j-1)*50+i-1.

2- Rangement des tableaux : Fortran parcourt les tableaux
colonnes après colonnes et les indices commencent à 1 !
Formule de passage :

double precision a(50,60)
a(12,22)=1.0

Où est a(12,22) ?

Vu du C : a : pointeur sur le début du tableau. Correspond à
a(1,1).

21 colonnes pleines avant a(12,22).
Donc, vu du C, a(12,22) est à l’adresse : a + 21*50+ 11.
Formule générale : a(i,j) − > a+ (j-1)*50+i-1.

2- Rangement des tableaux : Fortran parcourt les tableaux
colonnes après colonnes et les indices commencent à 1 !
Formule de passage :

double precision a(50,60)
a(12,22)=1.0

Où est a(12,22) ?

Vu du C : a : pointeur sur le début du tableau. Correspond à
a(1,1).
21 colonnes pleines avant a(12,22).
Donc, vu du C, a(12,22) est à l’adresse : a + 21*50+ 11.

Formule générale : a(i,j) − > a+ (j-1)*50+i-1.

2- Rangement des tableaux : Fortran parcourt les tableaux
colonnes après colonnes et les indices commencent à 1 !
Formule de passage :

double precision a(50,60)
a(12,22)=1.0

Où est a(12,22) ?

Vu du C : a : pointeur sur le début du tableau. Correspond à
a(1,1).
21 colonnes pleines avant a(12,22).
Donc, vu du C, a(12,22) est à l’adresse : a + 21*50+ 11.
Formule générale : a(i,j) − > a+ (j-1)*50+i-1.

Python -> C

I swig http://www.swig.org/
I BoostPython.
I cython (Python with C extensions)

Benchmark Sage : cython le plus rapide.
Pb. des callbacks.

http://www.swig.org/

Python -> Fortran

I f2py. http://cens.ioc.ee/projects/f2py2e/
I on doit pouvoir utiliser cython.

Ces interfaces sont utilisés par Scipy.

http://cens.ioc.ee/projects/f2py2e/

A l’aide !

Liste de diffusion du Groupe Calcul :
http://calcul.math.cnrs.fr/spip.php?rubrique3

http://calcul.math.cnrs.fr/spip.php?rubrique3

	Typologie
	Méthodes numériques
	Algèbre linéaire, typologie.
	Transformée de Fourier Rapide
	Systèmes d'équations différentielles

	Bibliothèques d'objets et méthodes associées
	Parallélisme
	Graphique
	Et d'autres besoins?
	Communications entres langages
	C(++) -> Fortran
	Python -> C(++), Python -> Fortran

	A l'aide!

