
Langages

Langages

Informatique scientifique pour le Calcul
Ecoles Doctorales 2014/2015

Vincent Miele

CNRS - Biométrie & Biologie Evolutive

Décembre 2014

Document disponible sur http://lyoncalcul.univ-lyon1.fr

http://lyoncalcul.univ-lyon1.fr

Langages

Passer du papier à l’ordinateur

I quel(s) langage(s) ? [ce cours]

I quelles algorithmes ? adaptés au calcul parallèle ? [cours suivant] comment
quantifier les ressources qu’ils demandent ? [cours précédent]

I quelles structures de données pour mon problème (indépendant du
langage) ? la transcription de celles que j’utilise sur la papier ? [cours
précédent]

Langages

Passer du papier à l’ordinateur

Objectifs

I efficacité → bien comprendre les coûts de calcul, théoriques [cours
précédent/ ce cours] et coût machine [cours précédent]

I robustesse → utiliser au maximum les standards, les librairies, s’appuyer
sur la communauté d’utilisateurs [ce cours]

I maximum de cohérence avec les algorithmes du papier → lisibilité,
encapsulation [ce/autre cours]

Langages

Typologie des langages

Les enjeux

Du pragmatisme, pas de dogmatisme

I la performance

I la lisibilité/maintenabilité/POO

I la disponibilité de librairies (“package”, “toolbox”, “module”, “library”)

I l’adaptabilité au calcul parallele

I l’interopérabilité

Dans ce cours, on se concentrera sur les langages les plus courants en Calcul :

C/C++, (Fortran), Python, (Perl), R, Matlab (Scilab)

Quelles différences entre ces langages
pour quelles avantages/inconvénients ?

Langages

Typologie des langages

Haut vs bas niveau

On parle de niveau d’un langage en fonction de la nécessité imposée au
programmeur de connâıtre le fonctionnement d’un ordinateur.

Le langage de très bas niveau est le langage machine binaire.

Plus le niveau est bas, plus les performances sont importantes.

Fortan et C/C++ sont considérés de niveau intermédiaire (permet la gestion
fine de la mémoire par exemple, et donc de la performance).

Python ou Perl sont des langages de haut niveau, de même que Matlab/Scilab
ou R (peu généralistes donc parfois appelés “environnements de programmation
scientifique”).

Langages

Typologie des langages

Haut vs bas niveau

On parle de niveau d’un langage en fonction de la nécessité imposée au
programmeur de connâıtre le fonctionnement d’un ordinateur.

Le langage de très bas niveau est le langage machine binaire.

Plus le niveau est bas, plus les performances sont importantes.

Fortan et C/C++ sont considérés de niveau intermédiaire (permet la gestion
fine de la mémoire par exemple, et donc de la performance).

Python ou Perl sont des langages de haut niveau, de même que Matlab/Scilab
ou R (peu généralistes donc parfois appelés “environnements de programmation
scientifique”).

Langages

Typologie des langages

Compilé vs interprété

Un langage est dit compilé quand le code ou programme source sous forme de
texte est tout d’abord lu et traité par un autre programme appelé compilateur
qui le convertit en langage machine.

Le compilateur signale les erreurs syntaxiques présentes dans le code source.

Cette phase de compilation peut parfois être très longue.

La compilation (et l’édition des liens, voir cours suivants) produit un exécutable
autonome qui ne fonctionne que sur le type de machine (OS, 32/64 bits) où la
compilation s’est déroulée.

C++, Fortran sont des langages compilés (avec un choix de compilateurs
gratuits ou non).

Langages

Typologie des langages

Compilé vs interprété

Un langage est dit compilé quand le code ou programme source sous forme de
texte est tout d’abord lu et traité par un autre programme appelé compilateur
qui le convertit en langage machine.

Le compilateur signale les erreurs syntaxiques présentes dans le code source.

Cette phase de compilation peut parfois être très longue.

La compilation (et l’édition des liens, voir cours suivants) produit un exécutable
autonome qui ne fonctionne que sur le type de machine (OS, 32/64 bits) où la
compilation s’est déroulée.

C++, Fortran sont des langages compilés (avec un choix de compilateurs
gratuits ou non).

Langages

Typologie des langages

Compilé vs interprété

Un programme en langage interprété nécessite pour fonctionner un
interprète(eur) qui est un autre programme qui va vérifier la syntaxe et traduire
directement, au fur et à mesure de son exécution, le programme source en
langage machine (un peu comme un interprète durant une interview).

Un programme interprété sera plus lent qu’un programme compilé du fait de la
traduction dynamique. Quand une ligne du programme doit être exécutée un
grand nombre de fois, l’interpréteur la traduit autant de fois qu’elle est
exécutée.

Néanmoins la correction des erreurs sera plus simple car l’interprète signale à
l’execution où se trouve l’erreur. Et le code source venant d’être écrit peut être
directement testé.

NB : un programme dans un langage interprété est parfois appelé script.

Python, R, Matlab (pas si simple. . . , voir après) sont des langages interprétés.

Langages

Typologie des langages

Compilé vs interprété

Un programme en langage interprété nécessite pour fonctionner un
interprète(eur) qui est un autre programme qui va vérifier la syntaxe et traduire
directement, au fur et à mesure de son exécution, le programme source en
langage machine (un peu comme un interprète durant une interview).

Un programme interprété sera plus lent qu’un programme compilé du fait de la
traduction dynamique. Quand une ligne du programme doit être exécutée un
grand nombre de fois, l’interpréteur la traduit autant de fois qu’elle est
exécutée.

Néanmoins la correction des erreurs sera plus simple car l’interprète signale à
l’execution où se trouve l’erreur. Et le code source venant d’être écrit peut être
directement testé.

NB : un programme dans un langage interprété est parfois appelé script.

Python, R, Matlab (pas si simple. . . , voir après) sont des langages interprétés.

Langages

Typologie des langages

Compilé vs interprété

Le compilateur réalise (à la demande) des
optimisations qui permettent de générer un code
plus efficace. Toutefois, le compilateur “prend des
risques” (il essaie de se mettre dans la tête du
programmeur avec +/- de succès) et du temps.

I loop unrolling :

I inlining : Effective STL, Scott Meyers, item 46
C++ sort est plus + rapide que C qsort si
on utilise un functor

I voir ci-contre. . .

Langages

Typologie des langages

Compilé vs interprété

1 #i n c l u d e <vector>
#i n c l u d e <i o s t r e a m>

3 u s i n g namespace s t d ;

5 c l a s s M a t r i x
{

7 p r i v a t e :
i n t s ;

9 vector<double> v i n t e r n a l ;
p u b l i c :

11 M a t r i x (i n t s)
: v i n t e r n a l (s∗s , 0) , s (s) {}

13 ˜ M a t r i x () {}
i n l i n e double& e l e m e n t (i n t i , i n t j){

15 r e t u r n v i n t e r n a l [i∗ s+j] ;
}

17 };

19 i n t main (i n t argc , char ∗∗ a r g v)
{

21 i n t s = 20000 ;

23 M a t r i x m(s) ;
// 1 0 . 3 0 s e c o n d e s avec −O0

25 // 1 . 6 9 s e c o n d e s avec −O3
f o r (i n t i =0; i<s ; i ++)

27 f o r (i n t j =0; j<s ; j ++)
m. e l e m e n t (i , j) = m. e l e m e n t (i , j)+m. e l e m e n t (i , j) ;

29 }

Langages

Typologie des langages

Typage statique vs dynamique

Les langages de typage fort dit statique imposent la déclaration précise de
toutes les variables (type, signe, taille) et les éventuelles conversions doivent
être explicites.

Rigidité mais sécurité.

Fortran, C++ (NB : mot clé auto en C++11).

Les langages non typés ou de typage dynamique sont très souples avec les
variables : pas de déclaration et possibilité de changement de type à la volée.

Le temps de développement est réduit (moins verbose) mais des erreurs non
detectables sont possibles (faute de frappe dans le nom de la variable).

La grande flexibilité que permet le typage dynamique se paye en général par
une surconsommation de mémoire correspondant à l’encodage du type dans la
valeur.

Python, R, Matlab

Langages

Typologie des langages

Typage statique vs dynamique

Les langages de typage fort dit statique imposent la déclaration précise de
toutes les variables (type, signe, taille) et les éventuelles conversions doivent
être explicites.

Rigidité mais sécurité.

Fortran, C++ (NB : mot clé auto en C++11).

Les langages non typés ou de typage dynamique sont très souples avec les
variables : pas de déclaration et possibilité de changement de type à la volée.

Le temps de développement est réduit (moins verbose) mais des erreurs non
detectables sont possibles (faute de frappe dans le nom de la variable).

La grande flexibilité que permet le typage dynamique se paye en général par
une surconsommation de mémoire correspondant à l’encodage du type dans la
valeur.

Python, R, Matlab

Langages

Typologie des langages

Objet vs procédural

Langage procédural : enchainement de procédures/fonctions sur des données
globales

I plusieurs fichiers, mais comment découper ?

I variables globales en début de programme, mais comment ne pas s’y
perdre ? si même traitement sur 2 variables ?

I lisibilité de la liste de paramètres ?
Exple : fonction correction(nbanimaux, age, poids, taille,

seuil, print, nbiterations,)

I Difficile de modifier car tout est imbriqué, idem pour un tester une
partie.Tout est accessible par tous (Couplage)

I Pbm de recopie de code (synchronisation !)

I Programme fragile, difficilement extensible

C, Fortran, Matlab ou R sont des langages procéduraux (malgré des évolutions)

Langages

Typologie des langages

Objet vs procédural

Langage procédural : enchainement de procédures/fonctions sur des données
globales

I plusieurs fichiers, mais comment découper ?

I variables globales en début de programme, mais comment ne pas s’y
perdre ? si même traitement sur 2 variables ?

I lisibilité de la liste de paramètres ?
Exple : fonction correction(nbanimaux, age, poids, taille,

seuil, print, nbiterations,)

I Difficile de modifier car tout est imbriqué, idem pour un tester une
partie.Tout est accessible par tous (Couplage)

I Pbm de recopie de code (synchronisation !)

I Programme fragile, difficilement extensible

C, Fortran, Matlab ou R sont des langages procéduraux (malgré des évolutions)

Langages

Typologie des langages

Objet vs procédural

Langage orienté objet : regrouper les données et les fonctionnalités associés en
enitités logicielles autonomes

I Identifier et grouper les �choses qui vont bien ensemble� en modules

I Les modules sont testés indépendemment pour assurer la robustesse du
code (tests unitaires)

I Séparer les modules les uns des autres (modularité)

I Réduire au strict minimum la visibilité inter-modules (encapsulation)

I Si nécessaire : structuration hiérarchique des modules (héritage)

I Programme principal en Lego : chef d’orchestre entre modules

C++ et Python sont nativement des langages orientés objet

Langages

Typologie des langages

Objet vs procédural

Langage orienté objet : regrouper les données et les fonctionnalités associés en
enitités logicielles autonomes

I Identifier et grouper les �choses qui vont bien ensemble� en modules

I Les modules sont testés indépendemment pour assurer la robustesse du
code (tests unitaires)

I Séparer les modules les uns des autres (modularité)

I Réduire au strict minimum la visibilité inter-modules (encapsulation)

I Si nécessaire : structuration hiérarchique des modules (héritage)

I Programme principal en Lego : chef d’orchestre entre modules

C++ et Python sont nativement des langages orientés objet

Langages

Typologie des langages

Benchmarks, à prendre et à laisser ?

La jungle des benchmarks du web est aussi la jungle des biais (sauf à réunir les
hyper-spécialistes de chaque langage), mais elle apporte des tendances
avérées. . .

B1 B2 B3 B4

‘C++ rocks”, Python Numpy. . . lenteur du “pure” Python ou R. Mais est-ce
aussi simple ?

https://modelingguru.nasa.gov/docs/DOC-1762
http://julialang.org/
http://stackoverflow.com/questions/7596612/benchmarking-python-vs-c-using-blas-and-numpy
http://martin-thoma.com/matrix-multiplication-python-java-cpp/

Langages

Typologie des langages

Benchmarks, à prendre et à laisser ?

La jungle des benchmarks du web est aussi la jungle des biais (sauf à réunir les
hyper-spécialistes de chaque langage), mais elle apporte des tendances
avérées. . .

B1 B2 B3 B4

‘C++ rocks”, Python Numpy. . . lenteur du “pure” Python ou R. Mais est-ce
aussi simple ?

https://modelingguru.nasa.gov/docs/DOC-1762
http://julialang.org/
http://stackoverflow.com/questions/7596612/benchmarking-python-vs-c-using-blas-and-numpy
http://martin-thoma.com/matrix-multiplication-python-java-cpp/

Langages

Typologie des langages

Benchmarks, à prendre et à laisser ?

k = 0
2 f o r i i n range (10∗∗7) : # 4 . 5 s e c o n d s

k = k+i

1 #i n c l u d e <s t d l i b . h>
#i n c l u d e <math . h>

3 i n t main ()
{

5 i n t k = 0 ;
f o r (i n t i =0; i<i n t (pow (1 0 , 7)) ; i ++){ // p o u s s i e r e s de s e c o n d e s

7 k += k+i ;
}

9 }

1 k <− 0
f o r (i i n 1 : 1 0 ˆ 7) # 15 s e c o n d s

3 k <− k+i

Langages

Typologie des langages

L’interoperabilité

LA tendance : interfacer les langages pour prendre le meilleur de chacun, i.e.
permettre la transmission des données entre plusieurs parties implementée dans
différents langages.

Les modules Python (packages R) les + efficaces sont
des interfaces Python (R resp.) vers C/C++ ou
Fortran.

L’exemple de NumPy “To build the module, you’ll need a

C compiler. Various NumPy modules use Fortran 77

libraries, so you’ll also need a Fortran 77 compiler”

De très nombreux codes C++ sont interfacés avec les
routines Fortran 77 de référence (BLAS, LAPACK,
ARPACK) mais attention à l’ordre en mémoire :
t[0][0], t[0][1] . . . t[n][m − 1], t[n][m] en C++
mais
t(1, 1), t(2, 1), . . . , t(m − 1, n), t(m, n) en Fortran !

Langages

Typologie des langages

L’interoperabilité

LA tendance : interfacer les langages pour prendre le meilleur de chacun, i.e.
permettre la transmission des données entre plusieurs parties implementée dans
différents langages.

Les modules Python (packages R) les + efficaces sont
des interfaces Python (R resp.) vers C/C++ ou
Fortran.

L’exemple de NumPy “To build the module, you’ll need a

C compiler. Various NumPy modules use Fortran 77

libraries, so you’ll also need a Fortran 77 compiler”

De très nombreux codes C++ sont interfacés avec les
routines Fortran 77 de référence (BLAS, LAPACK,
ARPACK) mais attention à l’ordre en mémoire :
t[0][0], t[0][1] . . . t[n][m − 1], t[n][m] en C++
mais
t(1, 1), t(2, 1), . . . , t(m − 1, n), t(m, n) en Fortran !

Langages

Typologie des langages

L’interoperabilité

LA tendance : interfacer des langages en Calcul.

Schéma classique d’un code de calcul (HNI : langage de haut niveau interprété,
NIC : niveau intermédiaire compilé)

I lecture des données + pré-traitement HNI

I étapes de calcul MNC

I post-traitement, visualisation et/ou écriture des données HNI

See “Extending Python with C or C++” or “Writing R extensions with foreign
language interfaces”

Langages

Typologie des langages

Au delà des querelles...

Perl is useful but painful !
Utilizing Pythons built-in methods or external modules can produce near or

better than C++ performance.
Apprendre Python, c’est apprendre le meilleur du C++, du Java, du Fortran,

etc...
Python ran an average of xxx slower than C++

The best thing about R is that it was developed by statisticians. The worst
thing about R is that...it was developed by statisticians !

C++ is the only way to go for low level systems programming C++ is life ! It’s
beauty ! It’s elegance and performance !

Langages

Typologie des langages

Au delà des querelles...

C/C++

+++ Langage très performant (si on fait du “vrai” C++, pas du C)
– Apprentissage difficile et long (pour tirer le meilleur du langage),

apprentissage de la compilation&co (voir cours suivants)
+++/- Verbeux mais très sûr
– Pas adapté pour le prototyping
+ Interface “tricky” avec Fortran
+++ POO nativement
+ Boost librairies, C++11
+++ Adapté à tous les niveaux de parallelisme :

classique (openMP, MPI) ou émergent (TBB, Silk)
- E/S et graphiques

Langages

Typologie des langages

Au delà des querelles...

Python

Python remplace avantageusement Matlab (payant, code propriétaire)
I used Matlab. Now I use Python.

+/- Performant ssi utilisation des modules ad-hoc (NumPy)
+++ Apprentissage facile. Adapté à la pédagogie de programmation
++ Rapidité de développement
+++ Prototyping
+++ Interface avec le C++ avec swig, cython, Boost.Python ou weave
+++ POO nativement
++/- Jungle des modules
+ Modules pour le parallélisme classique (multiprocessing, MPI4py)
++ E/S et graphiques

Langages

Typologie des langages

Au delà des querelles...

R

+/- Langage peu performant (pas de passage by reference)
sauf si on châıne les packages plus qu’on ne programme avec la syntaxe R

+/- Apprentissage ambigüe (facile pour les non-programmeurs)
++ Rapidité de développements de petits programmes
+++ Prototyping
+++ Interface avec C++ et Fortran (R-extensions)
- POO non native et peu efficace (S4)
+++/- Jungle des packages
+ Emergence du parallélisme avec R
+++ E/S et graphiques

Langages

Typologie des langages

exple-lang4

f = open (’ l a n g 4 . dat ’)
2 d i c o = {}

4 f o r l i n e i n f . x r e a d l i n e s () :
e l t s = l i n e . s t r i p () . s p l i t (’ ’)

6 d i c o [e l t s [0]] = e l t s [1]

8 f o r key i n d i c o . k e y s () :
p r i n t d i c o [key] , ’ pour l a c l e ’ , key

1 PuyDeDome 63
C a n t a l 15

3 H a u t e l o i r e 43
A l l i e r 03

v m i e l e @ t u l i p e $ python l a n g 4 . py
2 43 pour l a c l e H a u t e l o i r e

15 pour l a c l e C a n t a l
4 03 pour l a c l e A l l i e r

63 pour l a c l e PuyDeDome

Langages

Typologie des langages

exple-lang4

1 #i n c l u d e<f s t r e a m>
#i n c l u d e<i o s t r e a m>

3 #i n c l u d e<map>
#i n c l u d e<s t r i n g>

5 #i n c l u d e<ss t ream>
u s i n g namespace s t d ;

7 i n t main ()
{

9 i f s t r e a m f ;
f . open (” l a n g 4 . dat ”) ;

11 map<s t r i n g , i n t> d i c o ;

13 s t r i n g l i n e ;
w h i l e (! f . e o f ()){

15 g e t l i n e (f , l i n e) ;
i s t r i n g s t r e a m l i n e s t r e a m (l i n e) ;

17 s t r i n g a ;
i n t b ;

19 l i n e s t r e a m>>a ;
l i n e s t r e a m>>b ;

21 d i c o [a] = b ;
}

23
f o r (map<s t r i n g , i n t >:: i t e r a t o r i t e r=d i c o . b e g i n () ;

25 i t e r != d i c o . end () ; i t e r ++){
cout<<i t e r−>f i r s t <<” pour l a c l e ”<<i t e r−>second<<e n d l ;

27 }
}

Langages

Se documenter

Le bon reflexe

Ouvrir des livres et des revues

+ faire des benchmarks et du profiling (voir cours suivants)

+ participer à des réseaux métiers/collègues

+ éviter tout dogmatisme

+ Lecture : C++ coding standards, Herb Sutter, item 6 “Correctness,
simplicity and clarity come first”

	Passer du papier à l'ordinateur
	Typologie des langages
	Les enjeux
	Haut vs bas niveau
	Compilé vs interprété
	Typage statique vs dynamique
	Objet vs procédural
	Benchmarks, à prendre et à laisser?
	L'interoperabilité
	Au delà des querelles...
	exple-lang4

	Se documenter
	Le bon reflexe

