
Structures de données et complexité

Structures de données et complexité

Informatique scientifique pour le Calcul
Ecoles Doctorales 2014/2015

Vincent Miele

CNRS - Biométrie & Biologie Evolutive

Décembre 2014

Document disponible sur http://lyoncalcul.univ-lyon1.fr

http://lyoncalcul.univ-lyon1.fr

Structures de données et complexité

Passer du papier à l’ordinateur

I quel(s) langage(s) ? [cours suivant]

I quelles algorithmes ? adaptés au calcul parallèle ? [cours suivant] comment
quantifier les ressources qu’ils demandent ? [ce cours]

I quelles structures de données pour mon problème (indépendant du
langage) ? la transcription de celles que j’utilise sur la papier ? [ce cours]

Structures de données et complexité

Passer du papier à l’ordinateur

Objectifs

I efficacité → bien comprendre les coûts de calcul, théoriques [ce cours] et
coût machine [cours précédent Violaine]

I robustesse → utiliser au maximum les standards, les librairies, s’appuyer
sur la communauté d’utilisateurs [cours suivant]

I maximum de cohérence avec les algorithmes du papier → lisibilité,
encapsulation [ce/autre cours]

Structures de données et complexité

Complexité

Definition

Definition

La complexité d’un problème caractérise les ressources nécessaires pour les
résoudre. Les ressources essentielles sont le temps (d’éxecution) et l’espace
(mémoire).

Jusqu’aux années 70, seule la mesure expérimentale de la complexité d’un
algorithme était (parfois) effectuée et dépendait des machines. . . une mesure
théorique devint souhaitable !

Definition

La complexité algorithmique est un ordre de grandeur théorique du temps de
calcul (complexité en temps) et/ou de l’espace mémoire (complexité en
mémoire) utilisé en fonction d’une mesure des données.

Souvent, si un algorithme permet de gagner du temps de calcul, il occupe
davantage de place en mémoire. . . vigilance. . .

Structures de données et complexité

Complexité

Definition

La complexité n’est pas la même selon les cas

I complexité au pire : complexité maximum, dans le cas le plus défavorable

I complexité en moyenne : il s’agit de la moyenne des complexités obtenues
selon les cas

I complexité au mieux : complexité minimum, dans le cas le plus favorable.
En pratique, cette complexité n’est pas très utile

Exemple (complexité en temps) : chercher un élement dans une liste de taille n
pire : n opérations
moyenne : (n+1)/2 opérations
au mieux : 1 opération

Structures de données et complexité

Complexité

Notation de Landau

Si on veut comparer des algorithmes sans considérer l’implémentation, on peut
comparer les complexités au regard de la taille attendue des données

I complexité au pire

I forme générale de la complexité, qui indique la façon dont elle évolue en
fonction d’un paramètre (ou plusieurs).
On utilisera la notation O(. . .) qui veut dire de l’ordre de. . . .

Definition

Notation de Landau : g est dite en O(f) s’il existe des constantes c > 0 et
x0 >> 0 tq g(x) < c ∗ f (x) pour tout x > x0. On note g = O(f) et on dit que
g est dominée asymptotiquement par f.

Si g = O(f) et f = O(h) alors g = O(h)
si g = O(f) et k un nombre, alors k ∗ g = O(f)
si f 1 = O(g1) et f 2 = O(g2) alors f 1 + f 2 = O(g2 + g2)
si f 1 = O(g1) et f 2 = O(g2) alors f 1 ∗ f 2 = O(g2 ∗ g2)

Structures de données et complexité

Complexité

Exemples

Si n est la taille des données, complexité en temps :
O(1) constante : extraction d’un élément dans un tableau
O(log(n)) logarithmique : recherche dichotomique dans une liste triée (voir
après)
O(n) linéaire : parcours d’une liste
O(nlog(n)) quasi-linéaire : tri d’un tableau
O(n2) quadratique : calcul du maximum d’une matrice carré
O(n3) cubique : multiplication matricielle (voir après)
O(2n) exponantielle : problème du sac à dos par force brute (énumération). . .

NB : la notation de Landau peut utiliser plusieurs paramètres décrivant la taille
du problème (exple : O(m ∗ n + q))

Structures de données et complexité

Complexité

A l’attaque !

Produit matrice x matrice

Pour la produit de deux matrice de taille mxn et nxp, on réalise n produits +n
sommes pour chaque élement de la matrice finale de taille mxp.
On a donc une complexité O(m ∗ p) en espace et O(n ∗m ∗ p)en temps

Pour le cas où m = p = n, O(n2) en espace et O(n3)en temps.

“L’algorithme de Coppersmith-Winograd [. . .] est en O(n2,376) [. . .] Mais
aucune implémentation de l’algorithme n’est utilisée car la constante dans le
grand O est prohibitive.” (Wikipedia)

Structures de données et complexité

Complexité

A l’attaque !

Recherche dichotomique dans un tableau trié

On coupe le tableau en deux et on cherche l’élément dans une des deux parties
en répétant le même traitement récursivement.

fonction rechercheElement(tab, x)

i <- 0; j <- tab.longueur-1;

tantque (i <= j) faire

si (tab[(j+i)/2] = x) alors retourne VRAI;

sinon

si (tab[(j+i)/2] > x) alors j <- (j+i)/2 - 1;

sinon i <- (j+i)/2 + 1;

Au pire, la longueur de la partie du segment de tableau [i , j] à traiter est
d’abord n, puis n/2, puis n/4,, jusqu’à ce que n/2t = 1.
Le nombre de tours de boucles est t = log2(n). La complexité en temps est
donc O(log(n)). O(n) en espace.

Structures de données et complexité

Complexité

Parallélisme

Le nombre de processeurs disponibles est une données à prendre en compte
dans la complexité. Deux alternatives pour exprimer la complexité :

I O(f (n)) avec g(n) processeurs : exprime la complexité obtenue avec un
nombre idéal de processeurs

I O(f (n, p)) avec p le nombre de processeurs : plus pragmatique
Permet d’intégrer la loi d’Amdhal : Oseq(f (n))) + Opar (g(n)/p)
Si Oseq(f (n)) est dominé, alors on garde Opar (g(n)/p).

NB : attention à Ocomm(h(n)) !

Structures de données et complexité

Complexité

La complexité comme indicateur

La complexité nous aide à choisir le bon algorithme et les bonnes structures de
données. C’est un indicateur.

Mais attention aux constantes devant le O(. . .) !

Et attention aux coûts réels engendrés par les accès mémoire, la bande
passante, les architectures des processeurs.

Un bon algorithme en machine est d’abord celui qui privilégie la localité
spatiale et temporelle !

Structures de données et complexité

Complexité

La complexité comme indicateur

Deux algorithmes de même complexité, mais l’un respecte la localité spatiale et
temporelle, l’autre non.

1 #i n c l u d e <vector>
u s i n g namespace s t d ;

3 i n t main (i n t argc , char ∗∗ a r g v)
{

5 i n t s = 18000 ;
vector<vector<double> > v (s , vector<double>(s , 0 .)) ;

7

// r e a l 0m8. 9 7 0 s
9 f o r (i n t i =0; i<s ; i ++)

f o r (i n t j =0; j<s ; j ++)
11 v [i] [j] = v [i] [j] + v [i] [j] ;

13 // r e a l 0m45 . 0 7 7 s
f o r (i n t i =0; i<s ; i ++)

15 f o r (i n t j =0; j<s ; j ++)
v [j] [i] = v [j] [i] + v [j] [i] ;

17 }

Structures de données et complexité

Structures de données

Du cerveau à l’odinateur : copier/coller ?

Prélude : dans ce qui suit, on s’appuit sur les containeurs de la STL C++, mais
des équivalents existent dans les autres langages.

Sur la papier, on a des structures de données de type :

I vecteur

I matrice pleine

I matrice creuse (ou graphe) avec m élements tq m ∼ O(n) ou m << n2

I des listes (triés), des piles

I des couples “identifiants-observations”

I . . .

Doit-on chercher à utiliser formellement les même structures sur le papier et en
machine ? ou seulement moralement ?
On veut des performances en temps ET de la parcimonie en espace.

Structures de données et complexité

Structures de données

Vecteur - vector<.>

La clé de voûte de l’efficacité, car cohérence avec la structure en lignes de
caches (cf. cours précédent)

I simple tableau de taile n (mémoire contigüe !) avec information de
longueur

I access O(1)

I insert O(n), 0(1) à la fin

I find O(n)

I delete O(n), 0(1) à la fin

I sort O(nlog(n))

NB : on peut aussi créer des tableaux comme en C

Structures de données et complexité

Structures de données

Vecteur - vector<.>

Encapsulation d’un vecteur interne pour gérer les matrices pleines

c l a s s M a t r i x
2 {

p r i v a t e :
4 i n t s ;

vector<double> v i n t e r n a l ;
6 p u b l i c :

M a t r i x (i n t s)
8 : v i n t e r n a l (s∗s , 0) , s (s) {}

M a t r i x (const M a t r i x& m)
10 : v i n t e r n a l (m. v i n t e r n a l) , s (v . s) {}

˜ M a t r i x () {}
12 i n l i n e double& e l e m e n t (i n t i , i n t j){

r e t u r n v i n t e r n a l [i∗ s+j] ;
14 }
} ;

Structures de données et complexité

Structures de données

Liste - list<.>

Structure favorisant l’ajout/retrait des élements. La notion de longueur n’est
pas fondamentale car variable.

I liste doublement-chainée

I access NA

I insert 0(1)

I find O(n)

I delete O(1)

I sort O(nlog(n))

Structures de données et complexité

Structures de données

Liste - list<.>

Exple : Un liste d’élements évolue, chacun pouvant survire ou non (delete de
liste) et donner naissance à un nouvel élément (ajout en fin)

I une list<.> devrait convenir

I une approche basée sur les vector<.> mérite d’etre testée, avec ajout en
fin de vecteur (naissance) ou copie du dernier élement à la place du delete
(non survie) → danger de la copie

A tester après profiling !

Structures de données et complexité

Structures de données

Liste triée - set<.>

Permet de gérer un ensemble (au sens ensembliste - unicité) d’élements qui
seront placés dans la structure selon un critère de tri.

Premier containeur associatif, i.e. on accède à l’élément par une clé.

I red-black tree (variante des arbres binaires 1) Démo

I access NA

I insert O(log(n))

I find O(log(n))

I delete O(log(N))

I sort NA

Structure triée par construction, mais as-t-on besoin qu’elle le soit à chaque
étape de sa construction ?

1. plus petites (grandes) valeurs dans le sous arbre de gauche (droite resp.)

http://www.youtube.com/watch?v=vDHFF4wjWYU

Structures de données et complexité

Structures de données

Liste triée - set<.>

Exple : Insertion dans un set<.> ou tri/unicité à la fin avec un vector<.> ?

1 #i n c l u d e<s e t>
#i n c l u d e<vector>

3 #i n c l u d e<a l g o r i t h m>
#i n c l u d e<s t d l i b . h>

5 u s i n g namespace s t d ;
i n t t i r a g e (i n t n){

7 r e t u r n (i n t) ((double) rand () / ((double)RAND MAX + 1) ∗ n) ;
}

9 i n t main (i n t argc , char ∗∗ a r g v)
{

11 vector<i n t> vec ;
s e t<i n t> s ;

13 i n t n=1e7 ;

15 // 2 s e c
f o r (i n t i =0; i<n ; i ++)

17 vec . push back (t i r a g e (n)) ;
s o r t (vec . b e g i n () , vec . end ()) ;

19 vec . e r a s e (u n i q u e (vec . b e g i n () , vec . end ()) , vec . end ()) ;

21 // 16 s e c o n d e s
f o r (i n t i =0; i<n ; i ++)

23 s . i n s e r t (t i r a g e (n)) ;
}

Structures de données et complexité

Structures de données

Liste triée - set<.>

Exple : Une matrice creuse en 0/1 (cas d’école ici) est une liste d’élements non
nuls avec leur index. Comment l’interroger ? A-t-on besoin de la modifier ?

I list<pair<unsigned int, unsigned int> > : liste des paires d’indices
→ difficile à interroger

I list<list<unsigned int> > : une liste par ligne de la matrice, chaque
liste contient les indices des colonnes non nulles → dynamique mais pas de
contigüıté

I vecteur<list<unsigned int> > : si on connait le nombre de lignes,
comme précédemment mais plus efficace ?

I vecteur<set<unsigned int> > : comme précédemment mais on a le tri
et l’unicité des indices des colonnes → le tri est-il nécessaire à chaque
étape ?

Structures de données et complexité

Structures de données

Liste triée - set<.>

Exple : Une matrice creuse en 0/1 (cas d’école ici) est une liste d’élements non
nuls avec leur index. Comment l’interroger ? A-t-on besoin de la modifier ?

I vector<list<unsigned int> > puis sort/uniq puis
vector<vector<unsigned int> > : on passe par une structure
temporaire pour aller vers la structure la plus efficace → poids de la
recopie versus poids de l’utilisation de la structure finale

Quid des performances en machine : il faut tester/profiler.

Les conteneurs STL sont hyper-optimisés, les différences sont donc sensibles au
delà d’une certaine taille de problèmes.
C++ coding standards, Herb Sutter, item 8 “Don’t optimize prematurely”

Structures de données et complexité

Structures de données

Dictionnaire et table de hachage - map<.,.> et unordered map<.,.>

Associer des valeurs à des clés qui ne sont pas des entiers consécutifs
(containeur associatif)
map

I map<.,.> == set<pair<.,.> >

I access avec opérateur [] mais attention O(logn) !

I même comportement que le set<.> pour le reste

unordered map

I access par fonction de hachage
(calcul d’un index depuis une
clé) en O(1) au mieux

I comme son nom l’indique, les
élements ne sont pas ordonnés
mais on peut les parcourir

I très efficace en pratique

Structures de données et complexité

Structures de données

Dictionnaire et table de hachage - map<.,.> et unordered map<.,.>

#i n c l u d e<map>
2 #i n c l u d e<vector>

#i n c l u d e<s t r i n g>
4 #i n c l u d e<s t d l i b . h>

u s i n g namespace s t d ;
6 i n t t i r a g e (i n t n){

r e t u r n (i n t) ((double) rand () / ((double)RAND MAX + 1) ∗ n) ;
8 }

i n t main ()
10 {

vector<s t r i n g> v ;
12 map<i n t , s t r i n g> m;

i n t n = 1 e7 ;
14

/∗∗∗∗∗∗∗ i n i t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
16 f o r (i n t i =0; i<n ; i ++)

v . push back (”PuyDeDome”) ;
18 f o r (i n t i =0; i<n ; i ++)

m[i] = ”PuyDeDome” ;
20

/∗∗∗∗∗∗∗∗ a c c e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
22 // 4 s e c o n d e s

f o r (i n t i =0; i<n ; i ++){
24 i n t j = t i r a g e (n) ;

v [j] = ” C a n t a l ” ;
26 }

28 // 25 s e c o n d e s
f o r (i n t i =0; i<n ; i ++){

30 i n t j = t i r a g e (n) ;
m[j] = ” C a n t a l ” ;

32 }
}

Structures de données et complexité

Structures de données

Dictionnaire et table de hachage - map<.,.> et unordered map<.,.>

Exple : Une matrice creuse à valeurs réelles. . .

I map<pair<unsigned int, unsigned int>, double> : pratique mais pas
de contiguité en mémoire, empreinte mémoire conséquente

I triplet de vector : les valeurs, le positionnement par ligne et les indices de
colonnes → encapsulation

I s’appuyer sur une librairie

Structures de données et complexité

Structures de données

Dictionnaire et table de hachage - map<.,.> et unordered map<.,.>

Exple :
Nécessité de retenir les noms des n
sommets d’un graphe pour le
pre/post-traitement, mais inutilité
dans les étapes de calculs :

I conversion des noms en entiers
consecutifs + stockage de
arètes en matrice creuse

I utilisation de
map<string,unsigned int>

pour la conversion ou
vector<string> + find en
O(log(n))

I attention à la consommation de
mémoire additionnelle

Structures de données et complexité

Structures de données

Le reflexe du brainstorming

Use vector by default !

Lecture : Effective STL, Scott Meyers, item 23 “Consider replacing associative
containers with sorted vectors”

Lecture : C++ coding standards, Herb Sutter, item 76 “Use vector by default.
Otherwise choose an appropriate container”

Structures de données et complexité

Structures de données

Le reflexe du brainstorming

No container independent code !

Lecture : Effective STL, Scott Meyers, item 44 “Prefer member functions to
algorithms with the same names”

“Be curious” = Lire les specs des structures proposées (cppreference,
Wikipedia,. . .)

Lecture : C++ coding standards, Herb Sutter, item 8 “Don’t optimize
prematurely”

Lecture :The C++ standard library, Nicolai Josuttis, page 10, “Remeber to
think big when you consider complexity”

Faire des benchmarks pour se convaincre.

“Be lazy” = Toujours utiliser les structures de données des bibliothéques au
plus haut niveau possible.

Structures de données et complexité

Se documenter

Le bon reflexe

Ouvrir des livres et des revues

+ faire des benchmarks et du profiling (voir cours suivants)

+ participer à des réseaux métiers/collègues

+ éviter tout dogmatisme

+ Lecture : C++ coding standards, Herb Sutter, item 6 “Correctness,
simplicity and clarity come first”

	Passer du papier à l'ordinateur
	Complexité
	Definition
	Notation de Landau
	Exemples
	A l'attaque!
	Parallélisme
	La complexité comme indicateur

	Structures de données
	Du cerveau à l'odinateur: copier/coller?
	Vecteur - vector<.>
	Liste - list<.>
	Liste triée - set<.>
	Dictionnaire et table de hachage - map<.,.> et unordered_map<.,.>
	Le reflexe du brainstorming

	Se documenter
	Le bon reflexe

