
Computing with Floating Point

Florent de Dinechin, AriC Project, ENS-Lyon
Florent.de.Dinechin@ens-lyon.fr

UCBL, 21/02/2012.99999

First some advertising

To probe further:

Goldberg: What Every Computer Scientist Should Know
About Floating-Point Arithmetic

(Google will find you several copies)

The web page of William Kahan at Berkeley.

The web page of the AriC group.

Handbook of Floating-Point Arithmetic,
by Muller et al.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 1

Introduction

Introduction

Common misconceptions

Floating-point as it should be: the IEEE-754 standard

Floating-point as it is: processors, OS, languages and compilers

Conclusion and perspective

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 2

Scientific notation

From 9.10938215× 10−31 kg to 6.0221415× 1023 mol−1

Multiplication algorithm is trivial

(but typically involves some rounding)

Addition algorithm is slightly more complex

align the two numbers to the same exponent
perform the addition/subtraction
optionally, round

Golden rules (according to my physics teachers)

The number of digits we write is the number of digits we trust

Each number has a unit attached to it

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 3

Floating-point in your computer is just that

... with two main differences:

Binary instead of decimal

Since the Zuse Z1 (1938)

1.11111110000110000110000011000× 278

(how the exponent is coded is irrelevant)

The computer doesn’t manage the golden rules

No unit attached (Mars Climate Orbiter
crash in 1999)

The numbers of bits we manipulate is the
number of bits we have (correct or wrong)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 4

Let’s be formal

A floating-point number is a rational:

x = (−1)s ×m × βe

β is the radix
10 in your calculator, your bank’s computer,

and (usually) your head
2 in most computers (binary arithmetic)

s ∈ {0, 1} is a sign bit

m is the mantissa, a fixed-point number of p digits in radix β:

m = d0, d1d2...dp−1

e is the exponent, a signed integer between emin and emax

p specifies the precision of the format,
[emin...emax] specifies its dynamic.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 5

Normalized representation

An infinity of equivalent representations:

6.0221415× 1023

60221415× 1016

602214150000000000000000× 100

0.00000060221415× 1030

Imposing a unique representation will simplify comparisons

Which one is best?

Leading and trailing zeroes are useless (to the computation)

The first representation is preferred

one and only one non-zero digit before the point
then the exponent gives the order of magnitude

In radix 2, if the first digit is not a zero, it is a one
no need to store it.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 6

Mainstream formats of the IEEE-754 standard

Name binary32 binary64

(old name) (single precision) (double precision)

total size 32 bits 64 bits

p 24 53

2−p ≈ 6 · 10−8 ≈ 10−16

wE 8 12

emin, emax −126,+127 −1022,+1023

smallest ≈ 1.401× 10−45 ≈ 4.941× 10−324

largest ≈ 3.403× 1038 ≈ 1.798× 10308

S E

MSB LSB

p − 1 bits1 bit wE bits

F

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 7

Non mainstream formats in IEEE754-2008

binary16 (an exchange format, don’t compute with it)

binary128 (currently unsupported by hardware)

possibly extended formats

decimal formats

decimal32, decimal64

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 8

The decimal fiasco

Much debated in the early 2000 as the IEEE-754 standard was
revised

intended to support financial calculations
(interest rates are given in decimal)

supported in software on intel, in hardware in some IBM
mainframes

first mess: two different encodings

money is fixed-point, not floating-point

second mess: non-unicity of representation

My advice:

stay clear of decimal numbers,
and count your money in a 64-bit integer, it should fit.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 9

First important message

Floating point is something well defined and well understood

The set of floating-point numbers (on 32 or 64 bits) is well
defined

For any real x , we may define a function ◦(x) that returns the
FP number that is the nearest to x

The operations are also defined to be as good as possible
for instance, FP addition of a and b is defined as ◦(a + b)

We can build serious math and serious proofs on top of this

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 10

Floating-point formats in programming languages

sometimes real, real*8,

sometimes float,

sometimes silly names like double or even long double

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 11

Parenthesis: good language design

The numeric types in C:

char (the 8-bit integer) is an abbreviated noun (character)
from typography

unsigned char ???

you can add two charAB
int is an abbreviated noun (integer) from mathematics

although 2147483647 +1 = -2147483648

short and long are adjectives

float is a verb, at least it is a computer term

double means double what?

long double is not even syntactically correct in english

After so much nonsense, if you’re lost, it is not your fault...

Sorry for that. float=binary32, double=binary64

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 12

Common misconceptions

Introduction

Common misconceptions

Floating-point as it should be: the IEEE-754 standard

Floating-point as it is: processors, OS, languages and compilers

Conclusion and perspective

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 13

À tout seigneur, tout honneur

From Kahan’s lecture notes (on the web):

1. What you see is often not what you have.

2. What you have is sometimes not what you wanted.

3. If what you have hurt you, you will probably never know how
or why.

4. Things go wrong too rarely to be properly appreciated, but
not rarely enough to be ignored.

5. Items 1 to 4 do not constitute carte blanche to build floating
point any way you like.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 14

Common misconception 0

Floating-point numbers are real numbers

⊕ Of course they are, since they are rationals.

	 However, many properties on the reals are no longer true on
the floating-point numbers.
To start with: Floating-point addition is not associative

A perfectly sensible floating-point program
(Malcolm-Gentleman)

A := 1.0;

B := 1.0;

while ((A+1.0)-A)-1.0 = 0.0

A := 2 * A;

while ((A+B)-A)-B <> 0.0

B := B + 1.0;

return(B)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 15

Magnitude graphs

To reason about this kind of programs,

draw an x axis with the exponents

position the significands as rectangles of fixed size along this
axis

reason about the position of the result mantissa

draw the exact results, and the rounded results

Exercise

Illustrate that floating-point addition is not associative

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 16

Common misconception 0.5

All rational numbers can be represented as floating-point numbers
1/3 cannot. Worst, 1/10, 1/100 etc cannot either.
Remember that FP numbers are binary.
Many bugs in Excel are due to its attempts to hide this fact.

Exercise

What is the error of representing π as a binary32 number?

define “error”

compute a tight bound.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 17

The Patriot bug

In 1991, a Patriot failed to intercept a Scud (28 killed).

The code worked with time increments of 0.1 s.

But 0.1 is not representable in binary.

In the 24-bit format used, the number stored was
0.099999904632568359375

The error was 0.0000000953.

After 100 hours = 360,000 seconds, time is wrong by 0.34s.

In 0.34s, a Scud moves 500m

(similar problems have been discovered in civilian air traffic control
systems, after near-miss incidents)

Test: which of the following increments should you use?

10 5 3 1 0.5 0.25 0.2 0.125 0.1

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 18

Common misconception 1

Floating-point arithmetic is fuzzily defined, programs involving
floating-point should not be expected to be deterministic.

⊕ 1985: IEEE 754 standard for floating-point arithmetic.

⊕ All basic operations must be as accurate as possible.

⊕ Supported by all processors and even GPUs

	 ... but full compliance requires more cooperation between
processor, OS, languages, and compilers than the world is able
to provide.

	 Besides full compliance has a cost in terms of performance.

	 Anyway, parallel computers (multicores) are not deterministic
anymore

Floating-point programs may be deterministic and portable... but
not without work.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 19

Common misconception 1.5

A FP program that behaves deterministically probably returns the
correct result.

... probably...

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 20

Common misconception 2

A floating-point number somehow represents an interval of values
around the “real value”.

⊕ An FP number only represents itself (a rational)

	 The computer will not manage the golden rules for you!

	 If there is an epsilon or an incertainty somewhere in your data,
it is your job (as a programmer) to model and handle it.

⊕ This is much easier if an FP number only represents itself, and
if each operation is as accurate as possible.

If you are able to define accurately the “real value”
corresponding to every single variable in your 100,000 lines of code,
you definitely know more than the computer.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 21

Common misconception 3

All floating-point operations involve a (somehow fuzzy) rounding
error.

⊕ Many are exact, we know who they are, and we may even
force them into our programs

⊕ Since the IEEE-754 standard, rounding is well defined, and
you can do maths about it

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 22

Examples of exact operations

Decimal, 4 digits of mantissa

4.200 · 101 × 1.000 · 101 = 7.140 · 102

4.200 · 101 × 1.700 · 106 = 4.200 · 107

1.234 + 5.678 = 6.912

1.234− 1.233 = 0.001 = 1.000 · 10−3

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 23

My first cancellation

1.234− 1.233 = 0.001 = 1.000 · 10−3

On one hand, this operation is exact

if I consider that a floating-point number represents only itself

On the other hand, the 0s in the mantissa of the result are
probably meaningless

if I consider that, in the “real world”, my two input numbers
would have had digits beyond these 4.

So, is this situation good or bad ?
Usually good, but bad if the following computation depends on
these meaningless digits

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 24

Time for an exercise

Write a program that solves the quadratic equation

Formulas I learnt in school:

δ = b2 − 4ac

if δ ≥ 0, r =
−b ±

√
δ

2a

There are two subtractions here. Can one of them lead to
problematic cancellation? In which cases?

If yes, try and change the formula.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 25

Solution

The − in the formula of δ is harmless
we may have a catastrophic cancellation in δ when b2 ≈ 4ac
then δ << b2 so

√
δ << b

the operation following the cancellation is an addition
this additions shifts the meaningless digits out of the result
so r ≈ −b2a is computed accurately

There may be a cancellation in −b ±
√
δ

this happens if
√
δ ≈ b, i.e. 4ac << b2

the operation following the cancellation is a division
this division transfers these meaningless digits to the result
(same for a multiplication)

Solution:
test if the ± is a effective subtraction
for instance if b > 0 and ± = +,
multiply numerator and denominator of −b+

√
δ

2a with b +
√
δ

accurate formula in this case:

r =
−2c

b +
√
δ

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 26

Misconception 4:
16 digits should be enough for anybody

Double precision (binary64) provides roughly 16 decimal digits.

Count the digits in the following

Definition of the second: the duration of 9,192,631,770
periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the
cesium 133 atom.

Definition of the metre: the distance travelled by light in
vacuum in 1/299,792,458 of a second.

Most accurate measurement ever (another atomic frequency)
to 14 decimal places

Most accurate measurement of the Planck constant to date:
to 7 decimal places

The gravitation constant G is known to 3 decimal places only

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 27

Variants of misconceptions 4

If I need 3 significant digits in the end,
I shouldn’t worry about accuracy.

	 Cancellation may destroy 15 digits of information in one
subtraction

	 It will happen to you if you do not expect it

⊕ It is relatively easy to avoid if you expect it

Yet another variant: PI=3.1416 at the beginning of you program

⊕ sometimes it’s enough

	 Consider sin(2πFt) as time passes...

	 Your sine implementation needs to store 1440 bits (420
decimal digits) of 1/π...

(I’ll have one slide on decimal/binary conversion, don’t worry)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 28

Why then double-precision?

Vendors would sell us hardware that we don’t need?

This PC computes 109 operations per second (1 gigaflops)

This is a lot. Kulisch:

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm
109 flops ≈ heap height speed of 100m/s, or 360km/h
A teraflops (1012 op/s) machine builds in one second a pile of
paper to the moon.
Current top 500 computers reach the petaflop (1016 op/s)

Relationship to precision?

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 29

Where does precision go?

each operation may involve an error of the weight of the last
digit (relative error of 10−16)

If you are computing a big sum, these errors add up.

In a Gflops machine, after one second you have lost 9 digits of
your result (remains 6).

In a petaflops machine, you may have lost all your digits in
0.1s.

Managing this is a big challenge of current HPC

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 30

Common misconception 5

Estimated diameter of the Universe

Planck length
≈ 1062 ;

A double-precision FP number holds numbers up to 10308;
No need to worry about over/underflow

	 Over/underflows do happen in real code:

geometry (very flat triangles, etc)
statistics/probabilities
intermediate values, approximation formulae
...

	 it will happen to you if you do not expect it

⊕ It is relatively easy to avoid if you expect it

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 31

Of overflows and infinity arithmetic

Exercise

You need to compute
x2

√
x3 + 1

What happens for large values of x ?

Instead of (large)
√

x you get 0

x3 overflows (to +∞) before x2
√

+∞ = +∞
finite
+∞ = 0

Here again, the solution is

to expect the problem before it hurts you
and to protect the computation with a test which returns

√
x

for large values
(a more accurate result, obtained faster...)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 32

Common misconceptions 6

My good program gives wrong results, it’s because of approximate
floating-point arithmetic.

Mars Climate Orbiter crash

Naive two-body simulation
Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 33

Arithmetic is not always the culprit

Ask first-year students to write a simulation of one planet
around a sun

x(t) := v(t)δt
v(t) := a(t)δt

a(t) :=
K

||x(t)||2

You always get rotating ellipses
Analysing the simulation shows that it creates energy.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 34

Floating-point as it should be:
The IEEE-754 standard

Introduction

Common misconceptions

Floating-point as it should be: the IEEE-754 standard

Floating-point as it is: processors, OS, languages and compilers

Conclusion and perspective

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 35

The dark ages of anarchy

In the ancient times (before 1985), there were as many
implementations of floating-point as there were machines

no hope of portability

little hope of proving results e.g. on the numerical stability of
a program

horror stories : arcsin

(
x√

x2 + y 2

)
could segfault on a Cray

therefore, little trust in FP-heavy programs

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 36

Rationale behind the IEEE-754-85 standard

Enable data exchange

Ensure portability

Ensure provability

Ensure that some important mathematical properties hold

People will assume that x + y == y + x
People will assume that x + 0 == x
People will assume that x == y ⇔ x − y == 0
People will assume that x√

x2+y2
≤ 1

...

These benefits should not come at a significant performance
cost

Obviously, need to specify not only the number formats
but also the operations on these numbers.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 37

Normal numbers

Desirable properties :

an FP number has a unique representation

every FP number has an opposite

Normal numbers

x = (−1)s × 2e × 1.m

For unicity of representation, we impose d0 6= 0.
(In binary, d0 6= 0 =⇒ d0 = 1: It needn’t be stored.)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 38

Exceptional numbers

Desirable properties :

representation of 0

representations of ±∞ (and therefore ±0)

standardized behaviour in case of overflow or underflow.

return ∞ or 0, and raise some flag/exception

representations of NaN: Not a Number
(result of 00,

√
−1, ...)

Quiet NaN
Signalling NaN

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 39

Choice of binary representation

Desirable property: the order of FP numbers is the lexicographical
order of their binary representation

Binary encoding of positive numbers

place exponent at the MSB (left of significand)

infinity is larger than any normal number:
code it with the largest exponent 111...12

zero is smaller than any normal number:
code it with the smallest exponent 000...02

for normal exponents: biased representation

assume wE bits of exponent
exponent field E ∈ {0...2wE − 1} codes for exponent
e = E − bias
In IEEE-754, bias for significand in [1, 2) is
bias = 2wE−1 − 1 = 0111...12

How to code NaNs? Significand of infinity? Significand of 0? ...

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 40

Subnormal numbers

x = (−1)s × 2e × 1.m
−8

−1.0000 .2

−1.1111.2
−8

−7
−1.0000 .2

0

Desirable properties :

x == y ⇔ x − y == 0
Graceful degradation of precision around zero

Subnormal numbers

if E = 00...02, the implicit d0 is equal to 0:

x = (−1)s × 2emin × 0.m

−8
−1.0000 .2

−1.1111.2
−8

−7
−1.0000 .2

−0.0001 .2
−8

−0.1111 .2
−8

0

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 41

Complete binary representation (positive numbers)

3 bits of exponent, 4 bits of fraction (4+1 bits of significand)
exp fraction value comment

000 0000 0 Zero

000 0001 0.0001 · 2emin smallest positive (subnormal)
... ...
000 1111 0.1111 · 2emin largest subnormal

001 0000 1.0000 · 2emin smallest normal
... ...
110 1111 1.1111 · 2emax largest normal

111 0000 +∞
111 0001 NaN
... ...
111 1111 NaN

NextAfter obtained by adding 1 to the binary representation
from 0 to +∞

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 42

Operations

Desirable properties :

If a + b is a FP number, then a⊕ b should return it

Rounding should be monotonic

Rounding should not introduce any statistical bias

Sensible handling of infinities and NaNs

Correct rounding to the nearest:

The basic operations (noted ⊕, 	, ⊗, �), and the square root
should return the FP number closest to the mathematical result.

In case of tie, round to the number with an even significand
=⇒ no bias.

An unambiguous choice: this is the best that the format allows

Three other rounding modes: to +∞, to −∞, to 0, with similar
correct rounding requirement (and no tie problem).

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 43

Oh, and by the way the standard should be
implementable

(back in 1985 this was a bit controversial)

The exact sum of two FP numbers of precision p can be
stored on ≈ 2p bits only
Same for the exact product
Same for division – even for 1/3 = 0.0101010101(01)∞

to compute x/y , first compute (q, r) such that x = yq + r
then use r to decide rounding of q

Same for square root
to compute

√
x , first compute (s, r) such that x = s2 + r

then use r to decide rounding of s

Most controversial point:

Subnormal handling is indeed complex/expensive, and has long
been trapped to software/microcode

Correctly rounded elementary functions were considered not
implementable then

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 44

A few theorems (useful or not)

Let x and y be FP numbers.

Sterbenz Lemma: if x/2 < y < 2x then x 	 y = x − y

The rounding error when adding x and y :
r = (x + y)− (x ⊕ y) is an FP number, and if x ≥ y it may
be computed as

r := y 	 ((x ⊕ y)	 x);

The rounding error when multiplying x and y :
r = xy − (x ⊗ y) is an FP number and may be computed by a
(slightly more complex) sequence of ⊗, ⊕ and 	 operations.

√
x ⊗ x + y ⊗ y ≥ x

...

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 45

Here I should try to prove Sterbenz lemma

Floating-point format in radix β with p digits of significand
Suppose x and y are positive.
Notation using integral significands:

x = Mx × βex−p+1,

y = My × βey−p+1,

with
emin ≤ ex ≤ emax

emin ≤ ey ≤ emax

0 ≤ Mx ≤ βp − 1

0 ≤ My ≤ βp − 1.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 46

Suppose y ≤ x therefore ey ≤ ex : define δ = ex − ey

x − y =
(

Mxβ
δ −My

)
× βey−p+1.

Define M = Mxβ
δ −My

x ≥ y implies M ≥ 0;

x ≤ 2y implies x − y ≤ y , hence Mβey−p+1 ≤ Myβ
ey−p+1;

therefore,
M ≤ My ≤ βp − 1.

So x − y is equal to M × βe−p+1 with emin ≤ e ≤ emax and
|M| ≤ βp − 1. This shows that x − y is a floating-point number,
which implies that it is exactly computed.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 47

Remarks on this proof

We haven’t used the rounding mode ?!?

We just proved that the mathematical result is representable
Any rounding mode ◦ verifies: if Z is representable, then
◦(Z) = Z
Sterbenz lemma is true for any rounding mode.

We need subnormals, of course.

−8
−1.0000 .2

−1.1111.2
−8

−7
−1.0000 .2

0

(Normal numbers have an integral significand such that
βp−1 ≤ M ≤ βp − 1 and we couldn’t prove the left inequality)

We don’t care about the binary encoding (only that there is
an emin)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 48

Representing your constants

Writing a constant in decimal can be safe enough if you are aware
of the following.

Any binary FP number can be written in decimal (given
enough digits)

first rewrite m.2e = (5−em).10e

then find some k such that 10k .m.2e is an integer n
then m.2e = n.10e−k

The reciprocal is not true (e.g. 0.1)

Modern compilers are well behaved:

They will consider all the decimal digits you give them
They will round the decimal constant you provide to the
nearest FP number

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 49

Error-free write-read cycle

Theorem

Writing a binary32 (resp. binary64 number) to file on 10 (resp.
20) decimal digits guarantees that the exact same number will be
read back.

(Actually the minimal decimal sizes are 9 and 17 digits)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 50

The conclusion so far

We have a standard for FP, and it seems well thought out.

(all we have seen was already in the 1985 version – more on
the 2008 revision later)

Let us try to use it.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 51

Floating-point as it is:

processors, OS, languages and
compilers

Introduction

Common misconceptions

Floating-point as it should be: the IEEE-754 standard

Floating-point as it is: processors, OS, languages and compilers

Conclusion and perspective

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 52

A frightening introductory example

Let us compile the following C program:

1 f l o a t r e f , i n d e x ;
2

3 r e f = 169 .0 / 1 70 . 0 ;
4

5 f o r (i = 0 ; i < 250 ; i++) {
6 i n d e x = i ;
7 i f (r e f == (i ndex / (i ndex + 1 . 0))) break ;
8 }
9

10 p r i n t f (” i=%d\n” , i) ;

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 53

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view:
Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Still, on this expensive laptop, FP computing is not
straightforward, even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 54

Who is in charge of ensuring the standard?

The processor

has internal FP registers,
performs basic FP operations,
raises exceptions,
writes results to memory.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 55

Who is in charge of ensuring the standard?

The processor

The operating system

handles exceptions
computes functions/operations not handled directly in
hardware

I most elementary functions (sine/cosine, exp, log, ...),
I divisions and square roots on recent processors
I subnormal numbers

handles floating-point status: precision, rounding mode, ...
I older processors: global status register
I more recent FPUs: rounding mode may be encoded in the

instruction

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 56

Who is in charge of ensuring the standard?

The processor

The operating system

The programming language

should have a well-defined semantic,
... (detailed in some arcane 1000-pages document)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 57

Who is in charge of ensuring the standard?

The processor

The operating system

The programming language

The compiler

has hundreds of options
some of which to preserve the well-defined semantic of the
language
but probably not by default:
Marketing says: default should be optimize for speed!

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 58

Who is in charge of ensuring the standard?

The processor

The operating system

The programming language

The compiler

The programmer

... is in charge in the end.

Of course, eventually, the programmer will get the blame.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 59

The common denominator of modern processors

Hardware support for

addition/subtraction and multiplication
in single-precision (binary32) and double-precision (binary64)
SIMD versions: two binary32 operations for one binary64
various conversions and memory accesses

Typical performance:

3-7 cycles for addition and multiplication, pipelined
(1 op/cycle)
15-50 cycles for division and square root, not pipelined (hard
or soft).
50-500 cycles for elementary functions (soft)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 60

Keep clear from the legacy IA32/x87 FPU

It is slower than the (more recent) SSE2 FPU

It is more accurate (“double-extended” 80 bit format), but at
the cost of entailing horrible bugs in well-written programs

the bane of floating-point between 1985 and 2005

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 61

A funny horror story

(real story, told by somebody at CERN)

Use the (robust and tested) standard sort function of the STL
C++ library

to sort objects by their radius: according to x*x+y*y.

Sometimes (rarely) segfault, infinite loop...

Why?

the sort algorithm works under the naive assumption that
if A ≮ B, then A ≥ B
(difficult to write a sort algorithm without this assumption)
x*x+y*y inlined and compiled differently at two points of the
programme,
computation on 64 or 80 bits, depending on register allocation
enough to break the assumption (horribly rarely).

We will see there was no programming mistake.
And it is very difficult to fix.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 62

The SSE2 unit of current IA32 processors

Available for all recent x86 processors (AMD and Intel)

An additional set of 128-bit registers

An additional FP unit able of

2 identical double-precision FP operations in parallel, or
4 identical single-precision FP operations in parallel.

clean and standard implementation

subnormals trapped to software, or flushed to zero
depending on a compiler switch (gcc has the safe default)

And soon AVX: multiply all these numbers by 2
(256-bit registers, etc)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 63

Quickly, the Power family

Power and PowerPC processors, also in IBM mainframes and
supercomputers

No floating-point adders or multipliers

Instead, one or two FMA: Fused Multiply-and-Add

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of 2
enable efficient implementation of division and square root

Standardized in IEEE-754-2008

but not yet in your favorite language

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 64

FMA: the good

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of 2
enable efficient implementation of division and square root

All the modern FPUs are built around the FMA:
ARM, Power, IA64, all GPGPUs, and even intel AVX.

enables classical operations, too...

Addition: ◦(a× 1 + c)
Multiplication: ◦(a× b + 0)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 65

FMA: ...the bad and the ugly

◦(a× b + c)

Using it breaks some expected mathematical propertie

Loss of symmetry in
√

a2 + b2

Worse: a2 − b2, when a = b :
◦(◦(a× a)− a× a)

Worse: if b2 ≥ 4ac then (...)
√

b2 − 4ac

Do you see the sort bug lurking?

By default, gcc disables the use of FMA altogether
(except as + and ×)
(compiler switches to turn it on)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 66

Quickly, IA64 (aka Itanium)

They don’t sell that many of them, but the best available FP
architecture

Two double-extended FMA (best of IA32 – without the bane–
and best of Power)

instead of one FP status register, 4 of them, selectable on an
instruction-basis

you can mix round up and round down, double and
double-extended
on all other architecture, changing the FP status requires
flushing the pipeline (10-100 cycles)

A register format with two more exponent bits (17).

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 67

Evaluation of an expression

Consider the following program, whatever the language

float a,b,c,x;

x = a+b+c+d;

Two questions:

In which order will the three addition be executed?

What precision will be used for the intermediate results?

Fortran, C and Java have completely different answers.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 68

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)
Is the order fixed by the language, or is the compiler free to
choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 69

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

What precision will be used for the intermediate results?
Bottom up precision: (here all float)

I elegant (context-independent)
I portable
I sometimes dangerous: compare C=(F-32)*(5/9) and

C=(F-32)*5/9

Use the maximum precision available which is no slower
I in C, variable types refer to memory locations
I more accurate result

Is the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 70

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard:
International Standard ISO/IEC1539-1:2004. Programming
languages – Fortran – Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3.

and 1. is a computational difference, not a mathematical
difference. The difference between the values of the expressions
5/2 and 5./2. is a mathematical difference, not a computational
difference.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 71

Fortran’s philosophy (2)

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not
violated. Two expressions of a numeric type are mathematically
equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically
equivalent expressions of numeric type may produce different
computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 72

Fortran in details

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Allowable alternative form
X+Y Y+X
X*Y Y*X
-X + Y Y-X
X+Y+Z X + (Y + Z)
X-Y+Z X - (Y - Z)
X*A/Z X * (A / Z)
X*Y-X*Z X * (Y - Z)
A/B/C A / (B * C)
A / 5.0 0.2 * A

Consider the last line :

A/5.0 is actually more accurate 0.2*A. Why?

This line is valid if you replace 5 by 4, but not by 3. Why?

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 73

Fortran in details (2)

Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the
alternative forms that may be used by the processor in the actual
evaluation of the expression. This is useful for controlling the
magnitude and accuracy of intermediate values developed during
the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 74

Fortran in details (3)

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Forbidden alternative form

I/2 0.5 * I
X*I/J X * (I / J)
I/J/A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X*Y-X*Z

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 75

Fortran in details (4)

You have been warned.

The inclusion of parentheses may change the mathematical value
of an expression. For example, the two expressions A*I/J and
A*(I/J) may have different mathematical values if I and J are of
type integer.

That was the difference between C=(F-32)*(5/9) and
C=(F-32)*5/9.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 76

Enough standard, the rest is in the manual

(yes, you should read the manual of your favorite language
and also that of your favorite compiler)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 77

The C philosophy

The “C99” standard:
International Standard ISO/IEC 9899:1999(E).
Programming languages – C

Contrary to Fortran, the standard imposes an order of
evaluation

Parentheses are always respected,
Otherwise, left to right order with usual priorities
If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

Consequence: little expressions rewriting

Only if the compiler is able to prove that the two expressions
always return the same FP number, including in exceptional
cases

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 78

C in the gory details

Morceaux choisis from appendix F.8.2 of the C99 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor
NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 79

Obvious impact on performance

Therefore, default behaviour of commercial compiler tend to ignore
this part of the standard...
But there is always an option to enable it.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 80

The C philosophy (2)

So, perfect determinism wrt order

Strangely, precision is not determined by the standard: it
defines a bottom-up minimum precision, but invites the
compiler to take the largest precision which is larger than this
minimum, and no slower

Idea:

If you wrote float somewhere, you probably did so because
you thought it would be faster than double.
If the compiler gives you long double you won’t complain.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 81

Drawbacks of C philosophy

Small drawback
Before SSE, float was almost always double or
double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks
Storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore in the C philosophy it should be
avoided.
The compiler is free to choose which variables stay in registers,
and which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
Thus, sometimes a value is rounded twice, which may be even
less accurate than the target precision
And sometimes, the same computation may give different
results at different points of the program.
(sort bug explained when register file is 80 bits and memory
storage is 64 bits)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 82

Quickly, Java

Integrist approach to determinism: compile once, run
everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
	 Performance impact, but... only on PCs

(Sun also sells SPARCs)
	 You’ve paid for double-extended processor, and you can’t use

it (because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger
precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here. We can’t allow the sort bug.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 83

Quickly, Python

Floating point numbers
These represent machine-level double precision floating point
numbers. You are at the mercy of the underlying machine
architecture (and C or Java implementation) for the accepted
range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers;
the savings in processor and memory usage that are usually the
reason for using these is dwarfed by the overhead of using objects
in Python, so there is no reason to complicate the language with
two kinds of floating point numbers.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 84

Conclusion and perspective

Introduction

Common misconceptions

Floating-point as it should be: the IEEE-754 standard

Floating-point as it is: processors, OS, languages and compilers

Conclusion and perspective

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 85

A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, IEEE-754 becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this problem, but introduce the
FMA mess

In 2008, IEEE 754-2008 cleans up all this, but adds the
decimal mess

and then arrives the multicore mess

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 86

It shouldn’t be so messy, should it?

Don’t worry, things are improving

SSE2 has cleant up IA32 floating-point

Soon (AVX/SSE5) we have an FMA in virtually any processor
and we may use the fma() to exploit it portably

The 2008 revision of IEEE-754 addresses the issues of

reproducibility versus performance
precision of intermediate computations
etc

but it will take a while to percolate to your programming
environment

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 87

Tackling the HPC accuracy challenge

Floating point operations are not associative

... but optimisations tend to assume they are (or, that the order is
not important):

blocking for optimal cache usage (ATLAS)

parallelisation

The concept of reduction is valid only for associative operations

...

Rationale: there is no reason the new computation order should be
worse than the sequential one...
Actually there is: the optimizations enable larger problem sizes!

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 88

Example: large sums and sums of products

Cooking recipes: If you have to add terms of known different
magnitude, it may be a good idea to sort them

see the Handbook for variations on this theme

Better: bring associativity back by using error-free
transformations

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 89

Basic EFT blocks

2Sum

sl

a

b

sh

sh + sl = a + b exactly, and sh = ◦(a + b)

Also 2Mul block: ph + pl = a× b exactly, and ph = ◦(a× b)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 90

Exact sum of two FP numbers

Theorem (Fast2Sum algorithm)

Assuming

floating-point in radix β ≤ 3, with subnormal numbers

◦ correct rounding to nearest

a and b floating-point numbers

exponent of a ≥ exponent of b

The following algorithm computes two floating-point numbers s
and t satisfying:

s + t = a + b exactly;

s is the floating-point number that is closest to a + b.

s ← ◦(a + b)
z ← ◦(s − a)
t ← ◦(b − z)

That’s why it’s a good thing that languages should respect your
parentheses.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 91

If you don’t now if a > b

Either sort them

used to required a branch, which is Very Bad
now we have min and max instructions, much better

or use the following

TwoSum

s ← ◦(a + b)
a′ ← ◦(s − b), b′ ← ◦(s − a)
δa ← ◦(a− a′), δb ← ◦(b − b′)
t ← ◦(δa + δb)

proven in Coq

also works for radix 10
even in the presence of underflow

proven minimal branchless algorithm (by enumeration)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 92

Exact product of two FP numbers, with an FMA

TwoMulFMA

rh ← ◦(a× b)
rl ← ◦(h − a× b)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 93

EFT sum

s1 s2 s3 sn−1

sn2Sum 2Sum2Sum 2Suma1

a2 a3 a4 an

n∑
i=1

si =
n∑

i=1

ai exactly

sn is the iterative floating-point sum.

No information lost: EFT brings associativity back

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 94

A better rule of the game

No information lost: EFT brings associativity back

Now we can safely play optimization games

... with a well-specified rule of the game

for instance: return correct rounding of the exact sum

Implementation challenge: compute just right
(use EFTs only in the degenerate cases that need it)

(about 1 good paper/year on the subject in the last decade)

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 95

Example: Compensated sum

s

2Sum 2Sum2Sum 2Suma1

a2 a3 a4 an

correct the iterative sum with the sum of the “error terms”

(the latter being computed naively)

Theorem (Rump, Ogita, and Oishi)

If nu < 1, then, even in the presence of underflow,∣∣∣∣∣s −
n∑

i=1

xi

∣∣∣∣∣ ≤ u

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣+ γ2
n−1

n∑
i=1

|xi |.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 96

How accurate is a computation?

error = computed value - reference value

The reference value should not be the one computed by the
sequential code.

It is the value defined by the maths (or the physics)

Example: the exact sum of n floating-point numbers

(the reference to which sum algorithms should compare)

In “real”code, the reference is usually very difficult to define

approximation

discretisation

rounding

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 97

Error analysis

Proving the absence of over/underflow may be relatively easy

when you compute energies, not when you compute areas

Error analysis techniques: how are your equations sensitive to
roundoff errors ?

Forward error analysis: what errors did you make ?
Backward error analysis: which problem did you solve exactly ?

Notion of conditioning:

Cond =
|relative change in output|
|relative change in input|

= lim
x̂→x

|(f (x̂)− f (x)) /f (x)|
|(x̂ − x)/x |

Cond ≥ 1 problem is ill-conditionned / sensitive to rounding
Cond � 1 problem is well-conditionned / resistant to rounding
Cond may depend on x : again, make cases...

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 98

“Mindless” schemes to improve confidence

Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

Maple, Mathematica, GMP/MPFR

Repeat the computation with same precision but different
(IEEE-754) rounding modes, and compare the results.

all you need is change the processor status in the beginning

Repeat the computation a few times with same precision,
rounding each operation randomly, and compare the results.

stochastic arithmetic, CESTAC

Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

easy to do yourself

None of these schemes provide any guarantee. They may increase
confidence, though.
See “How Futile are Mindless Assessments of Roundoff in Floating-Point

Computation ?” on Kahan’s web page

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 99

Interval arithmetic

Instead of computing f (x), compute an interval [fl , fu] which
is guaranteed to contain f (x)

operation by operation
use directed rounding modes
several libraries exist

This scheme does provide a guarantee

... which is often overly pessimistic
(“ Your result is in [−∞,+∞], guaranteed”)

Limit interval bloat by being clever (changing your formula)

... and/or using bits of arbitrary precision when needed (MPFI
library).

Therefore not a mindless scheme

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 100

The last word

We have a standard for FP, it is a good one, and eventually
your PC will comply

The standard doesn’t guarantee that the result of your
program is close at all to the mathematical result it is
supposed to compute.

But at least it enables serious mathematics with floating-point

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 101

So, do you trust your computer now ?

“It makes me nervous to fly on airplanes since I know they are
designed using floating-point arithmetic.”

A. Householder

(... well, now they are piloted using floating-point arithmetic...)

Feel nervous, but feel in control.
It’s not dark magic, it’s science.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 102

Backup slides

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 103

The legacy FPU of IA32 instruction set

Implemented in processors by Intel, AMD, Via/Cyrix, Transmeta...
since the Intel 8087 coprocessor in 1985

internal double-extended format on 80 bits:
significand on 64 bits, exponent on 15 bits.

(almost) perfect IEEE compliance on this double-extended
format

one status register which holds (among other things)

the current rounding mode
the precision to which operations round the significand: 24, 53
or 64 bits.
but the exponent is always 15 bits

For single and double, IEEE-754-compliant rounding and
overflow handling (including exponent) performed when
writing back to memory

There probably is a rationale for all this, but... ask Intel people.

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 104

What it means

Assume you want a portable programme, i.e use double-precision.

Fully IEEE-754 compliant possible, but slow:

set the status flags to “round significand to 53 bits”
then write the result of every single operation to memory
(not every single but almost)

Next best: compliant except for over/underflow handling:

set the status flags to “round significand to 53 bits”
but computations will use 15-bit exponents instead of 12
OK if if you may prove that your program doesn’t generate
huge nor tiny values

If you compute in registers: register allocation decides if
you’re computing on 53 or 64 bits

random, unpredictible, unreproducible
the bane of floating-point between 1985 and 2005

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 105

Avoiding cancellations in practice

Computing the area of a triangle

Heron of Alexandria:
A :=

√
(s(s − x)(s − y)(s − z)) with s = (x + y + z)/2

Kahan’s algorithm:
Sort x , y , z so that x ≥ y ≥ z ;
If z < x − y then no such triangle exists ;
else A :=√

((x + (y + z))× (z − (x − y))× (z + (x − y))× (x + (y − z)))/4

Exercise: solving the quadratic equation by −b±
√
b2−4ac

2a

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 106

Trust your math

Classical example: Muller’s recurrence
x0 = 4
x1 = 4.25
xn+1 = 108− (815− 1500/xn−1)/xn

Any half-competent mathematician will find that it converges
to 5

On any calculator or computer system using non-exact
arithmetic, it will converge very convincingly to 100

xn =
α3n+1 + β5n+1 + γ100n+1

α3n + β5n + γ100n

Florent de Dinechin, AriC Project, ENS-Lyon Florent.de.Dinechin@ens-lyon.fr Computing with Floating Point 107

	Introduction
	Common misconceptions
	Floating-point as it should be: the IEEE-754 standard
	Floating-point as it is: processors, OS, languages and compilers
	Conclusion and perspective

